{"title":"零强迫数度分裂图和完全度分裂图","authors":"C. Dominic","doi":"10.2478/ausm-2019-0004","DOIUrl":null,"url":null,"abstract":"Abstract A subset ℤ ⊆ V(G) of initially colored black vertices of a graph G is known as a zero forcing set if we can alter the color of all vertices in G as black by iteratively applying the subsequent color change condition. At each step, any black colored vertex has exactly one white neighbor, then change the color of this white vertex as black. The zero forcing number ℤ (G), is the minimum number of vertices in a zero forcing set ℤ of G (see [11]). In this paper, we compute the zero forcing number of the degree splitting graph (𝒟𝒮-Graph) and the complete degree splitting graph (𝒞𝒟𝒮-Graph) of a graph. We prove that for any simple graph, ℤ [𝒟𝒮(G)] k + t, where ℤ (G) = k and t is the number of newly introduced vertices in 𝒟𝒮(G) to construct it.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2019-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Zero forcing number of degree splitting graphs and complete degree splitting graphs\",\"authors\":\"C. Dominic\",\"doi\":\"10.2478/ausm-2019-0004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract A subset ℤ ⊆ V(G) of initially colored black vertices of a graph G is known as a zero forcing set if we can alter the color of all vertices in G as black by iteratively applying the subsequent color change condition. At each step, any black colored vertex has exactly one white neighbor, then change the color of this white vertex as black. The zero forcing number ℤ (G), is the minimum number of vertices in a zero forcing set ℤ of G (see [11]). In this paper, we compute the zero forcing number of the degree splitting graph (𝒟𝒮-Graph) and the complete degree splitting graph (𝒞𝒟𝒮-Graph) of a graph. We prove that for any simple graph, ℤ [𝒟𝒮(G)] k + t, where ℤ (G) = k and t is the number of newly introduced vertices in 𝒟𝒮(G) to construct it.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2019-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/ausm-2019-0004\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/ausm-2019-0004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
摘要
如果可以通过迭代地应用随后的变色条件将图G中所有顶点的颜色都改变为黑色,则图G中初始着色的黑色顶点的一个子集(0≠V(G))称为零强迫集。在每一步中,任何黑色顶点都有一个白色的邻居,然后将这个白色顶点的颜色更改为黑色。零强迫数(G)是零强迫集(G)(见[11])中最小顶点数。本文计算了图的度分裂图(𝒮-Graph)和完全度分裂图(𝒮-Graph)的零强迫数。我们证明了对于任意简单图,n[𝒮(G)] k + t,其中n (G) = k, t是在𝒮(G)中构造它的新引入的顶点的个数。
Zero forcing number of degree splitting graphs and complete degree splitting graphs
Abstract A subset ℤ ⊆ V(G) of initially colored black vertices of a graph G is known as a zero forcing set if we can alter the color of all vertices in G as black by iteratively applying the subsequent color change condition. At each step, any black colored vertex has exactly one white neighbor, then change the color of this white vertex as black. The zero forcing number ℤ (G), is the minimum number of vertices in a zero forcing set ℤ of G (see [11]). In this paper, we compute the zero forcing number of the degree splitting graph (𝒟𝒮-Graph) and the complete degree splitting graph (𝒞𝒟𝒮-Graph) of a graph. We prove that for any simple graph, ℤ [𝒟𝒮(G)] k + t, where ℤ (G) = k and t is the number of newly introduced vertices in 𝒟𝒮(G) to construct it.