{"title":"用于自动位移跟踪的柔性印刷电小型微波谐振器","authors":"A. Banerjee, Farheen Fatima, N. Tiwari, M. Akhtar","doi":"10.1080/09205071.2023.2243255","DOIUrl":null,"url":null,"abstract":"In this paper, a planar split ring resonator-based flexible RF sensor is developed for linear and rotational position tracking of a target object. The proposed sensing scheme employs a 100 μm thin flexible printed resonator that facilitates ease of adherence to a target object than that of the conventional RF sensor. The realized printed resonator is excited by a near-field proximity coupling mechanism using a standard 50 Ω microstrip line. A detailed numerical analysis for the linear and rotational displacement of several dummy targets is carried out by recording the change in measured parameters corresponding to the relative change in position of the printed resonator attached to a dummy target under test. Afterward, the equivalent circuit and fabricated prototype of a printed flexible sensor is developed and tested for the linear and rotational displacement of several target materials under observation and an ANN model is developed to curb the uncertainty.","PeriodicalId":15650,"journal":{"name":"Journal of Electromagnetic Waves and Applications","volume":"30 1","pages":"1409 - 1424"},"PeriodicalIF":1.2000,"publicationDate":"2023-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Flexible printed electrically small microwave resonator for automated displacement tracking\",\"authors\":\"A. Banerjee, Farheen Fatima, N. Tiwari, M. Akhtar\",\"doi\":\"10.1080/09205071.2023.2243255\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a planar split ring resonator-based flexible RF sensor is developed for linear and rotational position tracking of a target object. The proposed sensing scheme employs a 100 μm thin flexible printed resonator that facilitates ease of adherence to a target object than that of the conventional RF sensor. The realized printed resonator is excited by a near-field proximity coupling mechanism using a standard 50 Ω microstrip line. A detailed numerical analysis for the linear and rotational displacement of several dummy targets is carried out by recording the change in measured parameters corresponding to the relative change in position of the printed resonator attached to a dummy target under test. Afterward, the equivalent circuit and fabricated prototype of a printed flexible sensor is developed and tested for the linear and rotational displacement of several target materials under observation and an ANN model is developed to curb the uncertainty.\",\"PeriodicalId\":15650,\"journal\":{\"name\":\"Journal of Electromagnetic Waves and Applications\",\"volume\":\"30 1\",\"pages\":\"1409 - 1424\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2023-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Electromagnetic Waves and Applications\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/09205071.2023.2243255\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Electromagnetic Waves and Applications","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/09205071.2023.2243255","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Flexible printed electrically small microwave resonator for automated displacement tracking
In this paper, a planar split ring resonator-based flexible RF sensor is developed for linear and rotational position tracking of a target object. The proposed sensing scheme employs a 100 μm thin flexible printed resonator that facilitates ease of adherence to a target object than that of the conventional RF sensor. The realized printed resonator is excited by a near-field proximity coupling mechanism using a standard 50 Ω microstrip line. A detailed numerical analysis for the linear and rotational displacement of several dummy targets is carried out by recording the change in measured parameters corresponding to the relative change in position of the printed resonator attached to a dummy target under test. Afterward, the equivalent circuit and fabricated prototype of a printed flexible sensor is developed and tested for the linear and rotational displacement of several target materials under observation and an ANN model is developed to curb the uncertainty.
期刊介绍:
Journal of Electromagnetic Waves and Applications covers all aspects of electromagnetic wave theory and its applications. It publishes original papers and review articles on new theories, methodologies, and computational techniques, as well as interpretations of both theoretical and experimental results.
The scope of this Journal remains broad and includes the following topics:
wave propagation theory
propagation in random media
waves in composites and amorphous materials
optical and millimeter wave techniques
fiber/waveguide optics
optical sensing
sub-micron structures
nano-optics and sub-wavelength effects
photonics and plasmonics
atmospherics and ionospheric effects on wave propagation
geophysical subsurface probing
remote sensing
inverse scattering
antenna theory and applications
fields and network theory
transients
radar measurements and applications
active experiments using space vehicles
electromagnetic compatibility and interferometry
medical applications and biological effects
ferrite devices
high power devices and systems
numerical methods
The aim of this Journal is to report recent advancements and modern developments in the electromagnetic science and new exciting applications covering the aforementioned fields.