D. Dosimont, Generoso Pagano, Guillaume Huard, Vania Marangozova-Martin, J. Vincent
{"title":"用于大规模应用程序跟踪的有效分析方法","authors":"D. Dosimont, Generoso Pagano, Guillaume Huard, Vania Marangozova-Martin, J. Vincent","doi":"10.1109/HPCSim.2014.6903791","DOIUrl":null,"url":null,"abstract":"The growing complexity of computer system hardware and software makes their behavior analysis a challenging task. In this context, tracing appears to be a promising solution as it provides relevant information about the system execution. However, trace analysis techniques and tools lack in providing the analyst the way to perform an efficient analysis flow because of several issues. First, traces contain a huge volume of data difficult to store, load in memory and work with. Then, the analysis flow is hindered by various result formats, provided by different analysis techniques, often incompatible. Last, analysis frameworks lack an entry point to understand the traced application general behavior. Indeed, traditional visualization techniques suffer from time and space scalability issues due to screen size, and are not able to represent the full trace. In this article, we present how to do an efficient analysis by using the Shneiderman's mantra: “Overview first, zoom and filter, then details on demand”. Our methodology is based on FrameSoC, a trace management infrastructure that provides solutions for trace storage, data access, and analysis flow, managing analysis results and tool. Ocelotl, a visualization tool, takes advantage of FrameSoC and shows a synthetic representation of a trace by using a time aggregation. This visualization solves scalability issues and provides an entry point for the analysis by showing phases and behavior disruptions, with the objective of getting more details by focusing on the interesting trace parts.","PeriodicalId":6469,"journal":{"name":"2014 International Conference on High Performance Computing & Simulation (HPCS)","volume":"23 1","pages":"951-958"},"PeriodicalIF":0.0000,"publicationDate":"2014-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Efficient analysis methodology for huge application traces\",\"authors\":\"D. Dosimont, Generoso Pagano, Guillaume Huard, Vania Marangozova-Martin, J. Vincent\",\"doi\":\"10.1109/HPCSim.2014.6903791\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The growing complexity of computer system hardware and software makes their behavior analysis a challenging task. In this context, tracing appears to be a promising solution as it provides relevant information about the system execution. However, trace analysis techniques and tools lack in providing the analyst the way to perform an efficient analysis flow because of several issues. First, traces contain a huge volume of data difficult to store, load in memory and work with. Then, the analysis flow is hindered by various result formats, provided by different analysis techniques, often incompatible. Last, analysis frameworks lack an entry point to understand the traced application general behavior. Indeed, traditional visualization techniques suffer from time and space scalability issues due to screen size, and are not able to represent the full trace. In this article, we present how to do an efficient analysis by using the Shneiderman's mantra: “Overview first, zoom and filter, then details on demand”. Our methodology is based on FrameSoC, a trace management infrastructure that provides solutions for trace storage, data access, and analysis flow, managing analysis results and tool. Ocelotl, a visualization tool, takes advantage of FrameSoC and shows a synthetic representation of a trace by using a time aggregation. This visualization solves scalability issues and provides an entry point for the analysis by showing phases and behavior disruptions, with the objective of getting more details by focusing on the interesting trace parts.\",\"PeriodicalId\":6469,\"journal\":{\"name\":\"2014 International Conference on High Performance Computing & Simulation (HPCS)\",\"volume\":\"23 1\",\"pages\":\"951-958\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-07-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 International Conference on High Performance Computing & Simulation (HPCS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/HPCSim.2014.6903791\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 International Conference on High Performance Computing & Simulation (HPCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HPCSim.2014.6903791","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Efficient analysis methodology for huge application traces
The growing complexity of computer system hardware and software makes their behavior analysis a challenging task. In this context, tracing appears to be a promising solution as it provides relevant information about the system execution. However, trace analysis techniques and tools lack in providing the analyst the way to perform an efficient analysis flow because of several issues. First, traces contain a huge volume of data difficult to store, load in memory and work with. Then, the analysis flow is hindered by various result formats, provided by different analysis techniques, often incompatible. Last, analysis frameworks lack an entry point to understand the traced application general behavior. Indeed, traditional visualization techniques suffer from time and space scalability issues due to screen size, and are not able to represent the full trace. In this article, we present how to do an efficient analysis by using the Shneiderman's mantra: “Overview first, zoom and filter, then details on demand”. Our methodology is based on FrameSoC, a trace management infrastructure that provides solutions for trace storage, data access, and analysis flow, managing analysis results and tool. Ocelotl, a visualization tool, takes advantage of FrameSoC and shows a synthetic representation of a trace by using a time aggregation. This visualization solves scalability issues and provides an entry point for the analysis by showing phases and behavior disruptions, with the objective of getting more details by focusing on the interesting trace parts.