在核心中探索更细的粒度:高效的(k,p)核心计算

Chen Zhang, Fan Zhang, W. Zhang, Boge Liu, Ying Zhang, Lu Qin, Xuemin Lin
{"title":"在核心中探索更细的粒度:高效的(k,p)核心计算","authors":"Chen Zhang, Fan Zhang, W. Zhang, Boge Liu, Ying Zhang, Lu Qin, Xuemin Lin","doi":"10.1109/ICDE48307.2020.00023","DOIUrl":null,"url":null,"abstract":"In this paper, we propose and study a novel cohesive subgraph model, named (k,p)-core, which is a maximal subgraph where each vertex has at least k neighbours and at least p fraction of its neighbours in the subgraph. The model is motivated by the finding that each user in a community should have at least a certain fraction p of neighbors inside the community to ensure user engagement, especially for users with large degrees. Meanwhile, the uniform degree constraint k, as applied in the k-core model, guarantees a minimum level of user engagement in a community, and is especially effective for users with small degrees. We propose an O(m) algorithm to compute a (k,p)-core with given k and p, and an O(dm) algorithm to decompose a graph by (k,p)-core, where m is the number of edges in the graph G and d is the degeneracy of G. A space efficient index is designed for time-optimal (k,p)-core query processing. Novel techniques are proposed for the maintenance of (k,p)-core index against graph dynamic. Extensive experiments on 8 reallife datasets demonstrate that our (k,p)-core model is effective and the algorithms are efficient.","PeriodicalId":6709,"journal":{"name":"2020 IEEE 36th International Conference on Data Engineering (ICDE)","volume":"14 1","pages":"181-192"},"PeriodicalIF":0.0000,"publicationDate":"2020-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":"{\"title\":\"Exploring Finer Granularity within the Cores: Efficient (k,p)-Core Computation\",\"authors\":\"Chen Zhang, Fan Zhang, W. Zhang, Boge Liu, Ying Zhang, Lu Qin, Xuemin Lin\",\"doi\":\"10.1109/ICDE48307.2020.00023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose and study a novel cohesive subgraph model, named (k,p)-core, which is a maximal subgraph where each vertex has at least k neighbours and at least p fraction of its neighbours in the subgraph. The model is motivated by the finding that each user in a community should have at least a certain fraction p of neighbors inside the community to ensure user engagement, especially for users with large degrees. Meanwhile, the uniform degree constraint k, as applied in the k-core model, guarantees a minimum level of user engagement in a community, and is especially effective for users with small degrees. We propose an O(m) algorithm to compute a (k,p)-core with given k and p, and an O(dm) algorithm to decompose a graph by (k,p)-core, where m is the number of edges in the graph G and d is the degeneracy of G. A space efficient index is designed for time-optimal (k,p)-core query processing. Novel techniques are proposed for the maintenance of (k,p)-core index against graph dynamic. Extensive experiments on 8 reallife datasets demonstrate that our (k,p)-core model is effective and the algorithms are efficient.\",\"PeriodicalId\":6709,\"journal\":{\"name\":\"2020 IEEE 36th International Conference on Data Engineering (ICDE)\",\"volume\":\"14 1\",\"pages\":\"181-192\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"21\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE 36th International Conference on Data Engineering (ICDE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDE48307.2020.00023\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 36th International Conference on Data Engineering (ICDE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDE48307.2020.00023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21

摘要

本文提出并研究了一种新的内聚子图模型(k,p)-core,它是一个极大子图,其中每个顶点在子图中至少有k个邻居和其邻居的至少p个分数。该模型的动机是发现社区中的每个用户都应该在社区中至少拥有一定比例的邻居p,以确保用户粘性,特别是对于拥有高学位的用户。同时,在k-core模型中应用的均匀度约束k保证了社区中用户参与度的最低水平,对于度小的用户尤其有效。我们提出了一种O(m)算法来计算给定k和p的(k,p)核,以及一种O(dm)算法来分解图(k,p)核,其中m是图G中的边数,d是G的简并度。提出了在图动态条件下维持(k,p)核指数的新方法。在8个真实数据集上的大量实验表明,我们的(k,p)核模型是有效的,算法是高效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Exploring Finer Granularity within the Cores: Efficient (k,p)-Core Computation
In this paper, we propose and study a novel cohesive subgraph model, named (k,p)-core, which is a maximal subgraph where each vertex has at least k neighbours and at least p fraction of its neighbours in the subgraph. The model is motivated by the finding that each user in a community should have at least a certain fraction p of neighbors inside the community to ensure user engagement, especially for users with large degrees. Meanwhile, the uniform degree constraint k, as applied in the k-core model, guarantees a minimum level of user engagement in a community, and is especially effective for users with small degrees. We propose an O(m) algorithm to compute a (k,p)-core with given k and p, and an O(dm) algorithm to decompose a graph by (k,p)-core, where m is the number of edges in the graph G and d is the degeneracy of G. A space efficient index is designed for time-optimal (k,p)-core query processing. Novel techniques are proposed for the maintenance of (k,p)-core index against graph dynamic. Extensive experiments on 8 reallife datasets demonstrate that our (k,p)-core model is effective and the algorithms are efficient.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Turbocharging Geospatial Visualization Dashboards via a Materialized Sampling Cube Approach Mobility-Aware Dynamic Taxi Ridesharing Multiscale Frequent Co-movement Pattern Mining Automatic Calibration of Road Intersection Topology using Trajectories Turbine: Facebook’s Service Management Platform for Stream Processing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1