极端尺度下药物构象的准确评分

Boyu Zhang, Trilce Estrada, Pietro Cicotti, P. Balaji, M. Taufer
{"title":"极端尺度下药物构象的准确评分","authors":"Boyu Zhang, Trilce Estrada, Pietro Cicotti, P. Balaji, M. Taufer","doi":"10.1109/CCGrid.2015.94","DOIUrl":null,"url":null,"abstract":"We present a scalable method to extensively search for and accurately select pharmaceutical drug candidates in large spaces of drug conformations computationally generated and stored across the nodes of a large distributed system. For each legend conformation in the dataset, our method first extracts relevant geometrical properties and transforms the properties into a single metadata point in the three-dimensional space. Then, it performs an ochre-based clustering on the metadata to search for predominant clusters. Our method avoids the need to move legend conformations among nodes because it extracts relevant data properties locally and concurrently. By doing so, we can perform accurate and scalable distributed clustering analysis on large distributed datasets. We scale the analysis of our pharmaceutical datasets a factor of 400X higher in performance and 500X larger in size than ever before. We also show that our clustering achieves higher accuracy compared with that of traditional clustering methods and conformational scoring based on minimum energy.","PeriodicalId":6664,"journal":{"name":"2015 15th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing","volume":"423 1","pages":"817-822"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Accurate Scoring of Drug Conformations at the Extreme Scale\",\"authors\":\"Boyu Zhang, Trilce Estrada, Pietro Cicotti, P. Balaji, M. Taufer\",\"doi\":\"10.1109/CCGrid.2015.94\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a scalable method to extensively search for and accurately select pharmaceutical drug candidates in large spaces of drug conformations computationally generated and stored across the nodes of a large distributed system. For each legend conformation in the dataset, our method first extracts relevant geometrical properties and transforms the properties into a single metadata point in the three-dimensional space. Then, it performs an ochre-based clustering on the metadata to search for predominant clusters. Our method avoids the need to move legend conformations among nodes because it extracts relevant data properties locally and concurrently. By doing so, we can perform accurate and scalable distributed clustering analysis on large distributed datasets. We scale the analysis of our pharmaceutical datasets a factor of 400X higher in performance and 500X larger in size than ever before. We also show that our clustering achieves higher accuracy compared with that of traditional clustering methods and conformational scoring based on minimum energy.\",\"PeriodicalId\":6664,\"journal\":{\"name\":\"2015 15th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing\",\"volume\":\"423 1\",\"pages\":\"817-822\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-05-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 15th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CCGrid.2015.94\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 15th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCGrid.2015.94","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

我们提出了一种可扩展的方法,可以在大型分布式系统的节点上计算生成和存储的大量药物构象空间中广泛搜索和准确选择候选药物。对于数据集中的每个图例构象,我们的方法首先提取相关的几何属性,并将这些属性转换为三维空间中的单个元数据点。然后,它在元数据上执行基于赭石的聚类,以搜索主要集群。我们的方法避免了在节点之间移动图例构象的需要,因为它在本地和并发地提取相关的数据属性。通过这样做,我们可以在大型分布式数据集上执行准确且可扩展的分布式聚类分析。我们将制药数据集的分析规模扩大了400倍,比以往任何时候都要大500倍。与传统的聚类方法和基于最小能量的构象评分相比,我们的聚类方法具有更高的准确率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Accurate Scoring of Drug Conformations at the Extreme Scale
We present a scalable method to extensively search for and accurately select pharmaceutical drug candidates in large spaces of drug conformations computationally generated and stored across the nodes of a large distributed system. For each legend conformation in the dataset, our method first extracts relevant geometrical properties and transforms the properties into a single metadata point in the three-dimensional space. Then, it performs an ochre-based clustering on the metadata to search for predominant clusters. Our method avoids the need to move legend conformations among nodes because it extracts relevant data properties locally and concurrently. By doing so, we can perform accurate and scalable distributed clustering analysis on large distributed datasets. We scale the analysis of our pharmaceutical datasets a factor of 400X higher in performance and 500X larger in size than ever before. We also show that our clustering achieves higher accuracy compared with that of traditional clustering methods and conformational scoring based on minimum energy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Self Protecting Data Sharing Using Generic Policies Partition-Aware Routing to Improve Network Isolation in Infiniband Based Multi-tenant Clusters MIC-Tandem: Parallel X!Tandem Using MIC on Tandem Mass Spectrometry Based Proteomics Data Study of the KVM CPU Performance of Open-Source Cloud Management Platforms Visualizing City Events on Search Engine: Tword the Search Infrustration for Smart City
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1