自动语音切分

D. Toledano, L. A. H. Gómez, Luis Villarrubia Grande
{"title":"自动语音切分","authors":"D. Toledano, L. A. H. Gómez, Luis Villarrubia Grande","doi":"10.1109/TSA.2003.813579","DOIUrl":null,"url":null,"abstract":"This paper presents the results and conclusions of a thorough study on automatic phonetic segmentation. It starts with a review of the state of the art in this field. Then, it analyzes the most frequently used approach-based on a modified Hidden Markov Model (HMM) phonetic recognizer. For this approach, a statistical correction procedure is proposed to compensate for the systematic errors produced by context-dependent HMMs, and the use of speaker adaptation techniques is considered to increase segmentation precision. Finally, this paper explores the possibility of locally refining the boundaries obtained with the former techniques. A general framework is proposed for the local refinement of boundaries, and the performance of several pattern classification approaches (fuzzy logic, neural networks and Gaussian mixture models) is compared within this framework. The resulting phonetic segmentation scheme was able to increase the performance of a baseline HMM segmentation tool from 27.12%, 79.27%, and 97.75% of automatic boundary marks with errors smaller than 5, 20, and 50 ms, respectively, to 65.86%, 96.01%, and 99.31% in speaker-dependent mode, which is a reasonably good approximation to manual segmentation.","PeriodicalId":13155,"journal":{"name":"IEEE Trans. Speech Audio Process.","volume":"445 1","pages":"617-625"},"PeriodicalIF":0.0000,"publicationDate":"2003-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"192","resultStr":"{\"title\":\"Automatic phonetic segmentation\",\"authors\":\"D. Toledano, L. A. H. Gómez, Luis Villarrubia Grande\",\"doi\":\"10.1109/TSA.2003.813579\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents the results and conclusions of a thorough study on automatic phonetic segmentation. It starts with a review of the state of the art in this field. Then, it analyzes the most frequently used approach-based on a modified Hidden Markov Model (HMM) phonetic recognizer. For this approach, a statistical correction procedure is proposed to compensate for the systematic errors produced by context-dependent HMMs, and the use of speaker adaptation techniques is considered to increase segmentation precision. Finally, this paper explores the possibility of locally refining the boundaries obtained with the former techniques. A general framework is proposed for the local refinement of boundaries, and the performance of several pattern classification approaches (fuzzy logic, neural networks and Gaussian mixture models) is compared within this framework. The resulting phonetic segmentation scheme was able to increase the performance of a baseline HMM segmentation tool from 27.12%, 79.27%, and 97.75% of automatic boundary marks with errors smaller than 5, 20, and 50 ms, respectively, to 65.86%, 96.01%, and 99.31% in speaker-dependent mode, which is a reasonably good approximation to manual segmentation.\",\"PeriodicalId\":13155,\"journal\":{\"name\":\"IEEE Trans. Speech Audio Process.\",\"volume\":\"445 1\",\"pages\":\"617-625\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"192\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Trans. Speech Audio Process.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TSA.2003.813579\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Trans. Speech Audio Process.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TSA.2003.813579","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 192

摘要

本文介绍了语音自动切分的研究成果和结论。首先回顾一下这一领域的最新进展。然后,分析了基于改进隐马尔可夫模型(HMM)语音识别器的最常用方法。针对该方法,提出了一种统计校正程序来补偿上下文相关hmm产生的系统误差,并考虑使用说话人自适应技术来提高分割精度。最后,本文探讨了用上述方法局部细化边界的可能性。提出了边界局部细化的一般框架,并在此框架下比较了几种模式分类方法(模糊逻辑、神经网络和高斯混合模型)的性能。所得到的语音分割方案能够将基线HMM分割工具的性能分别从误差小于5、20和50 ms的自动边界标记的27.12%、79.27%和97.75%提高到基于说话人的模式下的65.86%、96.01%和99.31%,这是一个相当好的近似人工分割。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Automatic phonetic segmentation
This paper presents the results and conclusions of a thorough study on automatic phonetic segmentation. It starts with a review of the state of the art in this field. Then, it analyzes the most frequently used approach-based on a modified Hidden Markov Model (HMM) phonetic recognizer. For this approach, a statistical correction procedure is proposed to compensate for the systematic errors produced by context-dependent HMMs, and the use of speaker adaptation techniques is considered to increase segmentation precision. Finally, this paper explores the possibility of locally refining the boundaries obtained with the former techniques. A general framework is proposed for the local refinement of boundaries, and the performance of several pattern classification approaches (fuzzy logic, neural networks and Gaussian mixture models) is compared within this framework. The resulting phonetic segmentation scheme was able to increase the performance of a baseline HMM segmentation tool from 27.12%, 79.27%, and 97.75% of automatic boundary marks with errors smaller than 5, 20, and 50 ms, respectively, to 65.86%, 96.01%, and 99.31% in speaker-dependent mode, which is a reasonably good approximation to manual segmentation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Errata to "Using Steady-State Suppression to Improve Speech Intelligibility in Reverberant Environments for Elderly Listeners" Farewell Editorial Inaugural Editorial: Riding the Tidal Wave of Human-Centric Information Processing - Innovate, Outreach, Collaborate, Connect, Expand, and Win Three-Dimensional Sound Field Reproduction Using Multiple Circular Loudspeaker Arrays Introduction to the Special Issue on Processing Reverberant Speech: Methodologies and Applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1