{"title":"基于广义投影神经网络的非线性仿射系统模型预测控制及其在连续搅拌槽式反应器中的应用","authors":"Zheng Yan, Jun Wang","doi":"10.1109/ICIST.2011.5765144","DOIUrl":null,"url":null,"abstract":"Model predictive control (MPC) is an advanced technique for process control. It is based on iterative, finite horizon optimization of a cost function associated with a plant model. Neural network is an effective approach for on-line optimization problems. In this paper, we apply the general projection neural network for MPC of nonlinear affine systems. Continuous stirred tank reactor (CSTR) system is a typical chemical reactor widely used in chemical industry and can be characterized as a nonlinear affine system. The general projection neural network based MPC is applied to the CSTR problem with input and output constraints. This application demonstrates the usefulness and effectiveness of proposed MPC approach to industrial problems.","PeriodicalId":6408,"journal":{"name":"2009 International Conference on Environmental Science and Information Application Technology","volume":"78 1","pages":"1011-1015"},"PeriodicalIF":0.0000,"publicationDate":"2011-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Model predictive control of nonlinear affine systems based on the general projection neural network and its application to a continuous stirred tank reactor\",\"authors\":\"Zheng Yan, Jun Wang\",\"doi\":\"10.1109/ICIST.2011.5765144\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Model predictive control (MPC) is an advanced technique for process control. It is based on iterative, finite horizon optimization of a cost function associated with a plant model. Neural network is an effective approach for on-line optimization problems. In this paper, we apply the general projection neural network for MPC of nonlinear affine systems. Continuous stirred tank reactor (CSTR) system is a typical chemical reactor widely used in chemical industry and can be characterized as a nonlinear affine system. The general projection neural network based MPC is applied to the CSTR problem with input and output constraints. This application demonstrates the usefulness and effectiveness of proposed MPC approach to industrial problems.\",\"PeriodicalId\":6408,\"journal\":{\"name\":\"2009 International Conference on Environmental Science and Information Application Technology\",\"volume\":\"78 1\",\"pages\":\"1011-1015\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-03-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 International Conference on Environmental Science and Information Application Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIST.2011.5765144\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 International Conference on Environmental Science and Information Application Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIST.2011.5765144","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Model predictive control of nonlinear affine systems based on the general projection neural network and its application to a continuous stirred tank reactor
Model predictive control (MPC) is an advanced technique for process control. It is based on iterative, finite horizon optimization of a cost function associated with a plant model. Neural network is an effective approach for on-line optimization problems. In this paper, we apply the general projection neural network for MPC of nonlinear affine systems. Continuous stirred tank reactor (CSTR) system is a typical chemical reactor widely used in chemical industry and can be characterized as a nonlinear affine system. The general projection neural network based MPC is applied to the CSTR problem with input and output constraints. This application demonstrates the usefulness and effectiveness of proposed MPC approach to industrial problems.