基于密集注意力金字塔网络的Sar图像多尺度船舶检测

Qi Li, Rui Min, Z. Cui, Y. Pi, Zhengwu Xu
{"title":"基于密集注意力金字塔网络的Sar图像多尺度船舶检测","authors":"Qi Li, Rui Min, Z. Cui, Y. Pi, Zhengwu Xu","doi":"10.1109/IGARSS.2019.8899062","DOIUrl":null,"url":null,"abstract":"The scales of different ships vary in synthetic aperture radar (SAR) images, especially for small scale ships, which only occupy few pixels. So ship detection methods currently face difficulties in detecting multiscale ships. A novel method for multiscale ship detection in SAR images based on Dense Attention Pyramid Network (DAPN) is proposed in this paper. It can extract multiscale and salient features by DAPN, which densely connects Convolutional Block Attention Module (CBAM) to each feature map from top to down of the pyramid network. Then the fused feature maps are fed to the detection network for multiscale ship detection. Experiments on SSDD dataset show a better performance of this method to detect multiscale ships in different scenes of SAR images.","PeriodicalId":13262,"journal":{"name":"IGARSS 2019 - 2019 IEEE International Geoscience and Remote Sensing Symposium","volume":"128 1","pages":"5-8"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Multiscale Ship Detection Based On Dense Attention Pyramid Network in Sar Images\",\"authors\":\"Qi Li, Rui Min, Z. Cui, Y. Pi, Zhengwu Xu\",\"doi\":\"10.1109/IGARSS.2019.8899062\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The scales of different ships vary in synthetic aperture radar (SAR) images, especially for small scale ships, which only occupy few pixels. So ship detection methods currently face difficulties in detecting multiscale ships. A novel method for multiscale ship detection in SAR images based on Dense Attention Pyramid Network (DAPN) is proposed in this paper. It can extract multiscale and salient features by DAPN, which densely connects Convolutional Block Attention Module (CBAM) to each feature map from top to down of the pyramid network. Then the fused feature maps are fed to the detection network for multiscale ship detection. Experiments on SSDD dataset show a better performance of this method to detect multiscale ships in different scenes of SAR images.\",\"PeriodicalId\":13262,\"journal\":{\"name\":\"IGARSS 2019 - 2019 IEEE International Geoscience and Remote Sensing Symposium\",\"volume\":\"128 1\",\"pages\":\"5-8\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IGARSS 2019 - 2019 IEEE International Geoscience and Remote Sensing Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IGARSS.2019.8899062\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IGARSS 2019 - 2019 IEEE International Geoscience and Remote Sensing Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IGARSS.2019.8899062","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

在合成孔径雷达(SAR)图像中,不同船舶的尺度不同,尤其是小尺度船舶,其所占像素很少。因此,当前船舶检测方法在检测多尺度船舶方面存在困难。提出了一种基于密集注意金字塔网络(DAPN)的SAR图像多尺度船舶检测方法。该算法通过将卷积块注意模块(CBAM)与金字塔网络自上而下的每个特征映射紧密连接,通过DAPN提取多尺度显著特征。然后将融合后的特征映射馈送到检测网络中进行多尺度船舶检测。在SSDD数据集上的实验表明,该方法在不同场景的SAR图像中具有较好的多尺度船舶检测性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Multiscale Ship Detection Based On Dense Attention Pyramid Network in Sar Images
The scales of different ships vary in synthetic aperture radar (SAR) images, especially for small scale ships, which only occupy few pixels. So ship detection methods currently face difficulties in detecting multiscale ships. A novel method for multiscale ship detection in SAR images based on Dense Attention Pyramid Network (DAPN) is proposed in this paper. It can extract multiscale and salient features by DAPN, which densely connects Convolutional Block Attention Module (CBAM) to each feature map from top to down of the pyramid network. Then the fused feature maps are fed to the detection network for multiscale ship detection. Experiments on SSDD dataset show a better performance of this method to detect multiscale ships in different scenes of SAR images.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Visual Question Answering From Remote Sensing Images The Impact of Additive Noise on Polarimetric Radarsat-2 Data Covering Oil Slicks Edge-Convolution Point Net for Semantic Segmentation of Large-Scale Point Clouds Burn Severity Estimation in Northern Australia Tropical Savannas Using Radiative Transfer Model and Sentinel-2 Data The Truth About Ground Truth: Label Noise in Human-Generated Reference Data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1