{"title":"在单位圆上均匀化解时间无关Schrödinger方程","authors":"K. Rajchel","doi":"10.2478/aupcsm-2019-0012","DOIUrl":null,"url":null,"abstract":"Abstract The idea presented here of a general quantization rule for bound states is mainly based on the Riccati equation which is a result of the transformed, time-independent, one-dimensional Schrödinger equation. The condition imposed on the logarithmic derivative of the ground state function W0 allows to present the Riccati equation as the unit circle equation with winding number equal to one which, by appropriately chosen transformations, can be converted into the unit circle equation with multiple winding number. As a consequence, a completely new quantization condition, which gives exact results for any quantum number, is obtained.","PeriodicalId":53863,"journal":{"name":"Annales Universitatis Paedagogicae Cracoviensis-Studia Mathematica","volume":"37 18 1","pages":"157 - 165"},"PeriodicalIF":0.1000,"publicationDate":"2019-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Solutions of the time-independent Schrödinger equation by uniformization on the unit circle\",\"authors\":\"K. Rajchel\",\"doi\":\"10.2478/aupcsm-2019-0012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The idea presented here of a general quantization rule for bound states is mainly based on the Riccati equation which is a result of the transformed, time-independent, one-dimensional Schrödinger equation. The condition imposed on the logarithmic derivative of the ground state function W0 allows to present the Riccati equation as the unit circle equation with winding number equal to one which, by appropriately chosen transformations, can be converted into the unit circle equation with multiple winding number. As a consequence, a completely new quantization condition, which gives exact results for any quantum number, is obtained.\",\"PeriodicalId\":53863,\"journal\":{\"name\":\"Annales Universitatis Paedagogicae Cracoviensis-Studia Mathematica\",\"volume\":\"37 18 1\",\"pages\":\"157 - 165\"},\"PeriodicalIF\":0.1000,\"publicationDate\":\"2019-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annales Universitatis Paedagogicae Cracoviensis-Studia Mathematica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/aupcsm-2019-0012\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales Universitatis Paedagogicae Cracoviensis-Studia Mathematica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/aupcsm-2019-0012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
Solutions of the time-independent Schrödinger equation by uniformization on the unit circle
Abstract The idea presented here of a general quantization rule for bound states is mainly based on the Riccati equation which is a result of the transformed, time-independent, one-dimensional Schrödinger equation. The condition imposed on the logarithmic derivative of the ground state function W0 allows to present the Riccati equation as the unit circle equation with winding number equal to one which, by appropriately chosen transformations, can be converted into the unit circle equation with multiple winding number. As a consequence, a completely new quantization condition, which gives exact results for any quantum number, is obtained.