抑制VVER-1200反应堆氙振荡的算法研究

Denis Alekseevich Soloviev, A. Khachatryan, E. V. Chernov, Rashdan Talal Al
{"title":"抑制VVER-1200反应堆氙振荡的算法研究","authors":"Denis Alekseevich Soloviev, A. Khachatryan, E. V. Chernov, Rashdan Talal Al","doi":"10.26583/npe.2022.2.04","DOIUrl":null,"url":null,"abstract":"This paper presents the results of numerical studies of various algorithms for suppression of xenon offset and power distribution oscillations in the core of a VVER-1200 reactor. The purpose of the research is to select an algorithm that minimizes the amount of liquid radioactive wastes during water exchange in the primary circuit of a nuclear power plant. For this, several algorithms for xenon oscillations suppression were considered. The first algorithm considered was an algorithm for suppression of xenon oscillations, which uses regulation due to AWP only, without utilization of any additional regulation.\n The second algorithm considered was an algorithm based on the use both AWP and boron regulation. In this algorithm suppression of xenon oscillations was carried out with the help of accelerated initiation of the work of the AWP by changing the boric acid concentration with constant second circuit pressure of the NPP and by utilization of the second control rods group.\n Last algorithm considered was algorithm based on the use of temperature control for accelerated initiation of the work of the AWP. In this algorithm, xenon oscillations suppression was carried out by changing coolant temperature at the reactor inlet caused by pressure change in the secondary circuit in the normal operation margins, and by involving the second group of control rods.\n It was shown that the best way to suppress xenon offset and power distribution oscillations in terms of minimization of radioactive liquid wastes amount is the algorithm with accelerated initiation of the AWP due to temperature regulation, with elimination of temperature regulation after minimizing of current axial offset value deviation from the nominal one.","PeriodicalId":37826,"journal":{"name":"Izvestiya Wysshikh Uchebnykh Zawedeniy, Yadernaya Energetika","volume":"56 1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigation of Algorithms for Suppressing Xenon Oscillations in a VVER-1200 Reactor\",\"authors\":\"Denis Alekseevich Soloviev, A. Khachatryan, E. V. Chernov, Rashdan Talal Al\",\"doi\":\"10.26583/npe.2022.2.04\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents the results of numerical studies of various algorithms for suppression of xenon offset and power distribution oscillations in the core of a VVER-1200 reactor. The purpose of the research is to select an algorithm that minimizes the amount of liquid radioactive wastes during water exchange in the primary circuit of a nuclear power plant. For this, several algorithms for xenon oscillations suppression were considered. The first algorithm considered was an algorithm for suppression of xenon oscillations, which uses regulation due to AWP only, without utilization of any additional regulation.\\n The second algorithm considered was an algorithm based on the use both AWP and boron regulation. In this algorithm suppression of xenon oscillations was carried out with the help of accelerated initiation of the work of the AWP by changing the boric acid concentration with constant second circuit pressure of the NPP and by utilization of the second control rods group.\\n Last algorithm considered was algorithm based on the use of temperature control for accelerated initiation of the work of the AWP. In this algorithm, xenon oscillations suppression was carried out by changing coolant temperature at the reactor inlet caused by pressure change in the secondary circuit in the normal operation margins, and by involving the second group of control rods.\\n It was shown that the best way to suppress xenon offset and power distribution oscillations in terms of minimization of radioactive liquid wastes amount is the algorithm with accelerated initiation of the AWP due to temperature regulation, with elimination of temperature regulation after minimizing of current axial offset value deviation from the nominal one.\",\"PeriodicalId\":37826,\"journal\":{\"name\":\"Izvestiya Wysshikh Uchebnykh Zawedeniy, Yadernaya Energetika\",\"volume\":\"56 1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Izvestiya Wysshikh Uchebnykh Zawedeniy, Yadernaya Energetika\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.26583/npe.2022.2.04\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Energy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Izvestiya Wysshikh Uchebnykh Zawedeniy, Yadernaya Energetika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26583/npe.2022.2.04","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Energy","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了抑制VVER-1200反应堆堆芯氙偏移和功率分布振荡的各种算法的数值研究结果。研究的目的是选择一种算法,使核电站一次回路水交换过程中放射性废液的量最小化。为此,考虑了几种抑制氙振荡的算法。第一个考虑的算法是抑制氙振荡的算法,它只使用由于AWP的调节,而不使用任何额外的调节。考虑的第二种算法是基于AWP和硼调节的算法。在该算法中,通过在NPP第二回路压力恒定的情况下改变硼酸浓度和利用第二控制棒组加速AWP的启动,实现了氙振荡的抑制。最后考虑的算法是基于温度控制的AWP加速启动算法。在该算法中,通过改变正常运行裕度内二次回路压力变化引起的反应堆入口冷却剂温度,以及第二组控制棒的参与,实现了氙振荡抑制。结果表明,从最小化放射性废液量的角度来看,抑制氙偏移和功率分布振荡的最佳方法是通过温度调节加速启动AWP的算法,在电流轴向偏移值与标称偏移值偏差最小后消除温度调节。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Investigation of Algorithms for Suppressing Xenon Oscillations in a VVER-1200 Reactor
This paper presents the results of numerical studies of various algorithms for suppression of xenon offset and power distribution oscillations in the core of a VVER-1200 reactor. The purpose of the research is to select an algorithm that minimizes the amount of liquid radioactive wastes during water exchange in the primary circuit of a nuclear power plant. For this, several algorithms for xenon oscillations suppression were considered. The first algorithm considered was an algorithm for suppression of xenon oscillations, which uses regulation due to AWP only, without utilization of any additional regulation. The second algorithm considered was an algorithm based on the use both AWP and boron regulation. In this algorithm suppression of xenon oscillations was carried out with the help of accelerated initiation of the work of the AWP by changing the boric acid concentration with constant second circuit pressure of the NPP and by utilization of the second control rods group. Last algorithm considered was algorithm based on the use of temperature control for accelerated initiation of the work of the AWP. In this algorithm, xenon oscillations suppression was carried out by changing coolant temperature at the reactor inlet caused by pressure change in the secondary circuit in the normal operation margins, and by involving the second group of control rods. It was shown that the best way to suppress xenon offset and power distribution oscillations in terms of minimization of radioactive liquid wastes amount is the algorithm with accelerated initiation of the AWP due to temperature regulation, with elimination of temperature regulation after minimizing of current axial offset value deviation from the nominal one.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Izvestiya Wysshikh Uchebnykh Zawedeniy, Yadernaya Energetika
Izvestiya Wysshikh Uchebnykh Zawedeniy, Yadernaya Energetika Energy-Nuclear Energy and Engineering
CiteScore
0.40
自引率
0.00%
发文量
30
期刊介绍: The scientific journal Izvestiya Wysshikh Uchebnykh Zawedeniy, Yadernaya Energetika is included in the Scopus database. Publisher country is RU. The main subject areas of published articles are Nuclear Energy and Engineering, Физика, Приборостроение, метрология и информационно-измерительные приборы и системы, Информатика, вычислительная техника и управление, Энергетика. Before sending a scientific article, we recommend you to read the section For authors. This will allow you to prepare an article better for publication, to make it more interesting for the readers and useful for the scientific community. By following these steps, you will greatly increase the likelihood of your scientific article publishing in journals included in international citation systems (e.g., Scopus). Then you may choose a different journal, select the journal included to list of SAC Russia journal list, or send your scientific work for review and publication.
期刊最新文献
Studies of the BN-350 Reactor Fuel, Structural and Absorbing Materials at the Hot Laboratory of the IPPE Study into the dependence of the Co-60 and Lu-177g efficiency production on the energy structure of neutron flux density On Dilation of the BN-350 Reactor Fuel Assemblies Reprocessing of Primary and Secondary Coolants During the BN-350 Reactor Decommissioning Principles of Construction and Development of an Automatic Protection System for Steam Generators of Fast Reactors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1