Som veer, M. Kumari, A. Pramanik, B. Lakshmaiah, B. Godara, PL Parameswari
{"title":"基于人工智能算法的纳米流体热物性预测方法","authors":"Som veer, M. Kumari, A. Pramanik, B. Lakshmaiah, B. Godara, PL Parameswari","doi":"10.46632/jdaai/2/3/10","DOIUrl":null,"url":null,"abstract":"Artificial Intelligence (AI) algorithms are increasingly being employed as substitutes for conventional methods or as components within integrated systems. They have demonstrated effectiveness in addressing complex applied problems across various domains, gaining popularity in the present context. AI approaches exhibit the ability to learn from patterns, tolerate faults by handling noisy data, and manage non-linear problems. Once trained, they excel in generalization and fast estimation. This survey presents a comprehensive review of AI algorithms developed for investigating nanofluid-related issues. In nanofluid research, the most commonly used neural network model is Multilayer perceptron neural network (MLP), while the Radial Basis Function Neural Network (RBF-ANN) is the preferred training method. the Generalized Regression Neural Networks (GRNNs) exhibit a simple structure that reduces learning time, making them particularly suitable for nanofluids modelling. Consequently, for nanofluids with a large number of samples, the use of RBF-ANN is recommended. The findings demonstrate the substantial potential of ANN methods as predictive and optimization tools for nanofluids. This paper highlights the recent researches done for evaluating thermo-physical properties of nanofluids using AI algorithms.","PeriodicalId":48765,"journal":{"name":"3 Biotech","volume":"379 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Predictive Approach for Evaluating Thermo-Physical Properties of Nano fluids Using Artificial Intelligence Algorithms\",\"authors\":\"Som veer, M. Kumari, A. Pramanik, B. Lakshmaiah, B. Godara, PL Parameswari\",\"doi\":\"10.46632/jdaai/2/3/10\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Artificial Intelligence (AI) algorithms are increasingly being employed as substitutes for conventional methods or as components within integrated systems. They have demonstrated effectiveness in addressing complex applied problems across various domains, gaining popularity in the present context. AI approaches exhibit the ability to learn from patterns, tolerate faults by handling noisy data, and manage non-linear problems. Once trained, they excel in generalization and fast estimation. This survey presents a comprehensive review of AI algorithms developed for investigating nanofluid-related issues. In nanofluid research, the most commonly used neural network model is Multilayer perceptron neural network (MLP), while the Radial Basis Function Neural Network (RBF-ANN) is the preferred training method. the Generalized Regression Neural Networks (GRNNs) exhibit a simple structure that reduces learning time, making them particularly suitable for nanofluids modelling. Consequently, for nanofluids with a large number of samples, the use of RBF-ANN is recommended. The findings demonstrate the substantial potential of ANN methods as predictive and optimization tools for nanofluids. This paper highlights the recent researches done for evaluating thermo-physical properties of nanofluids using AI algorithms.\",\"PeriodicalId\":48765,\"journal\":{\"name\":\"3 Biotech\",\"volume\":\"379 1\",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"3 Biotech\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.46632/jdaai/2/3/10\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"3 Biotech","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.46632/jdaai/2/3/10","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Predictive Approach for Evaluating Thermo-Physical Properties of Nano fluids Using Artificial Intelligence Algorithms
Artificial Intelligence (AI) algorithms are increasingly being employed as substitutes for conventional methods or as components within integrated systems. They have demonstrated effectiveness in addressing complex applied problems across various domains, gaining popularity in the present context. AI approaches exhibit the ability to learn from patterns, tolerate faults by handling noisy data, and manage non-linear problems. Once trained, they excel in generalization and fast estimation. This survey presents a comprehensive review of AI algorithms developed for investigating nanofluid-related issues. In nanofluid research, the most commonly used neural network model is Multilayer perceptron neural network (MLP), while the Radial Basis Function Neural Network (RBF-ANN) is the preferred training method. the Generalized Regression Neural Networks (GRNNs) exhibit a simple structure that reduces learning time, making them particularly suitable for nanofluids modelling. Consequently, for nanofluids with a large number of samples, the use of RBF-ANN is recommended. The findings demonstrate the substantial potential of ANN methods as predictive and optimization tools for nanofluids. This paper highlights the recent researches done for evaluating thermo-physical properties of nanofluids using AI algorithms.
期刊介绍:
3 Biotech publishes the results of the latest research related to the study and application of biotechnology to:
- Medicine and Biomedical Sciences
- Agriculture
- The Environment
The focus on these three technology sectors recognizes that complete Biotechnology applications often require a combination of techniques. 3 Biotech not only presents the latest developments in biotechnology but also addresses the problems and benefits of integrating a variety of techniques for a particular application. 3 Biotech will appeal to scientists and engineers in both academia and industry focused on the safe and efficient application of Biotechnology to Medicine, Agriculture and the Environment.