使用基于mdl的高斯模型的多变化点音频分割和分类

Chung-Hsien Wu, Chia-Hsin Hsieh
{"title":"使用基于mdl的高斯模型的多变化点音频分割和分类","authors":"Chung-Hsien Wu, Chia-Hsin Hsieh","doi":"10.1109/TSA.2005.852988","DOIUrl":null,"url":null,"abstract":"This study presents an approach for segmenting and classifying an audio stream based on audio type. First, a silence deletion procedure is employed to remove silence segments in the audio stream. A minimum description length (MDL)-based Gaussian model is then proposed to statistically characterize the audio features. Audio segmentation segments the audio stream into a sequence of homogeneous subsegments using the MDL-based Gaussian model. A hierarchical threshold-based classifier is then used to classify each subsegment into different audio types. Finally, a heuristic method is adopted to smooth the subsegment sequence and provide the final segmentation and classification results. Experimental results indicate that for TDT-3 news broadcast, a missed detection rate (MDR) of 0.1 and a false alarm rate (FAR) of 0.14 were achieved for audio segmentation. Given the same MDR and FAR values, segment-based audio classification achieved a better classification accuracy of 88% compared to a clip-based approach.","PeriodicalId":13155,"journal":{"name":"IEEE Trans. Speech Audio Process.","volume":"524 1","pages":"647-657"},"PeriodicalIF":0.0000,"publicationDate":"2006-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"47","resultStr":"{\"title\":\"Multiple change-point audio segmentation and classification using an MDL-based Gaussian model\",\"authors\":\"Chung-Hsien Wu, Chia-Hsin Hsieh\",\"doi\":\"10.1109/TSA.2005.852988\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study presents an approach for segmenting and classifying an audio stream based on audio type. First, a silence deletion procedure is employed to remove silence segments in the audio stream. A minimum description length (MDL)-based Gaussian model is then proposed to statistically characterize the audio features. Audio segmentation segments the audio stream into a sequence of homogeneous subsegments using the MDL-based Gaussian model. A hierarchical threshold-based classifier is then used to classify each subsegment into different audio types. Finally, a heuristic method is adopted to smooth the subsegment sequence and provide the final segmentation and classification results. Experimental results indicate that for TDT-3 news broadcast, a missed detection rate (MDR) of 0.1 and a false alarm rate (FAR) of 0.14 were achieved for audio segmentation. Given the same MDR and FAR values, segment-based audio classification achieved a better classification accuracy of 88% compared to a clip-based approach.\",\"PeriodicalId\":13155,\"journal\":{\"name\":\"IEEE Trans. Speech Audio Process.\",\"volume\":\"524 1\",\"pages\":\"647-657\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"47\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Trans. Speech Audio Process.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TSA.2005.852988\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Trans. Speech Audio Process.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TSA.2005.852988","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 47

摘要

本文提出了一种基于音频类型的音频流分割和分类方法。首先,采用静默删除过程去除音频流中的静默段。然后提出了一种基于最小描述长度(MDL)的高斯模型来统计表征音频特征。音频分割使用基于mdl的高斯模型将音频流分割成一系列同质子段。然后使用基于层次阈值的分类器将每个子段分类为不同的音频类型。最后,采用启发式方法对子片段序列进行平滑处理,给出最终的分割分类结果。实验结果表明,对于TDT-3新闻广播,该方法对音频进行分割的漏检率(MDR)为0.1,虚警率(FAR)为0.14。在相同的MDR和FAR值下,基于片段的音频分类比基于片段的方法获得了88%的更好的分类准确率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Multiple change-point audio segmentation and classification using an MDL-based Gaussian model
This study presents an approach for segmenting and classifying an audio stream based on audio type. First, a silence deletion procedure is employed to remove silence segments in the audio stream. A minimum description length (MDL)-based Gaussian model is then proposed to statistically characterize the audio features. Audio segmentation segments the audio stream into a sequence of homogeneous subsegments using the MDL-based Gaussian model. A hierarchical threshold-based classifier is then used to classify each subsegment into different audio types. Finally, a heuristic method is adopted to smooth the subsegment sequence and provide the final segmentation and classification results. Experimental results indicate that for TDT-3 news broadcast, a missed detection rate (MDR) of 0.1 and a false alarm rate (FAR) of 0.14 were achieved for audio segmentation. Given the same MDR and FAR values, segment-based audio classification achieved a better classification accuracy of 88% compared to a clip-based approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Errata to "Using Steady-State Suppression to Improve Speech Intelligibility in Reverberant Environments for Elderly Listeners" Farewell Editorial Inaugural Editorial: Riding the Tidal Wave of Human-Centric Information Processing - Innovate, Outreach, Collaborate, Connect, Expand, and Win Three-Dimensional Sound Field Reproduction Using Multiple Circular Loudspeaker Arrays Introduction to the Special Issue on Processing Reverberant Speech: Methodologies and Applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1