英国海上可再生能源的研究前景及其在实现净零排放中的作用

IF 32 1区 工程技术 Q1 ENERGY & FUELS Progress in Energy and Combustion Science Pub Date : 2022-08-23 DOI:10.1088/2516-1083/ac8c19
D. Greaves, S. Jin, P. Wong, David White, H. Jeffrey, B. Scott, Ross Wigg
{"title":"英国海上可再生能源的研究前景及其在实现净零排放中的作用","authors":"D. Greaves, S. Jin, P. Wong, David White, H. Jeffrey, B. Scott, Ross Wigg","doi":"10.1088/2516-1083/ac8c19","DOIUrl":null,"url":null,"abstract":"This paper sets out the role of offshore renewable energy (ORE) in UK targets for Net Zero greenhouse gas emissions by 2050 and provides a review of the research challenges that face the sector as it grows to meet these targets. The research challenges are set out in a Research Landscape that was established by the ORE Supergen Hub following extensive consultation with the ORE community. The challenges are divided into eight themes, each challenge is described, and current progress is summarised. The progress of the ORE sector in recent years has seen huge cost reductions, which have encouraged the great ambition for the sector seen in UK Government targets. However, in order to meet these critical targets and achieve Net Zero, further innovations and novel technologies will be needed and at pace, driven forward by new research and innovation. The strategy of the Supergen ORE Hub in framing the research and innovation activities within a community-developed research landscape and working together across disciplines and with close collaboration between academia and industry is a necessary component in achieving the ambition of sustainable energy generation.","PeriodicalId":410,"journal":{"name":"Progress in Energy and Combustion Science","volume":"111 1","pages":""},"PeriodicalIF":32.0000,"publicationDate":"2022-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"UK perspective research landscape for offshore renewable energy and its role in delivering Net Zero\",\"authors\":\"D. Greaves, S. Jin, P. Wong, David White, H. Jeffrey, B. Scott, Ross Wigg\",\"doi\":\"10.1088/2516-1083/ac8c19\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper sets out the role of offshore renewable energy (ORE) in UK targets for Net Zero greenhouse gas emissions by 2050 and provides a review of the research challenges that face the sector as it grows to meet these targets. The research challenges are set out in a Research Landscape that was established by the ORE Supergen Hub following extensive consultation with the ORE community. The challenges are divided into eight themes, each challenge is described, and current progress is summarised. The progress of the ORE sector in recent years has seen huge cost reductions, which have encouraged the great ambition for the sector seen in UK Government targets. However, in order to meet these critical targets and achieve Net Zero, further innovations and novel technologies will be needed and at pace, driven forward by new research and innovation. The strategy of the Supergen ORE Hub in framing the research and innovation activities within a community-developed research landscape and working together across disciplines and with close collaboration between academia and industry is a necessary component in achieving the ambition of sustainable energy generation.\",\"PeriodicalId\":410,\"journal\":{\"name\":\"Progress in Energy and Combustion Science\",\"volume\":\"111 1\",\"pages\":\"\"},\"PeriodicalIF\":32.0000,\"publicationDate\":\"2022-08-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in Energy and Combustion Science\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1088/2516-1083/ac8c19\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Energy and Combustion Science","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/2516-1083/ac8c19","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 2

摘要

本文阐述了海上可再生能源(ORE)在英国2050年净零温室气体排放目标中的作用,并回顾了该行业在实现这些目标的过程中所面临的研究挑战。在与ORE社区广泛协商后,ORE Supergen Hub建立了一个研究景观,其中列出了研究挑战。挑战分为八个主题,对每个挑战进行了描述,并总结了当前的进展。近年来,矿石行业的进步已经看到了巨大的成本降低,这鼓励了英国政府对该行业的雄心壮志。然而,为了达到这些关键目标并实现净零排放,将需要进一步的创新和新技术,并在新的研究和创新的推动下向前发展。Supergen ORE Hub的战略是在社区发展的研究环境中制定研究和创新活动,并在学术界和工业界之间开展跨学科合作和密切合作,这是实现可持续能源生产雄心的必要组成部分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
UK perspective research landscape for offshore renewable energy and its role in delivering Net Zero
This paper sets out the role of offshore renewable energy (ORE) in UK targets for Net Zero greenhouse gas emissions by 2050 and provides a review of the research challenges that face the sector as it grows to meet these targets. The research challenges are set out in a Research Landscape that was established by the ORE Supergen Hub following extensive consultation with the ORE community. The challenges are divided into eight themes, each challenge is described, and current progress is summarised. The progress of the ORE sector in recent years has seen huge cost reductions, which have encouraged the great ambition for the sector seen in UK Government targets. However, in order to meet these critical targets and achieve Net Zero, further innovations and novel technologies will be needed and at pace, driven forward by new research and innovation. The strategy of the Supergen ORE Hub in framing the research and innovation activities within a community-developed research landscape and working together across disciplines and with close collaboration between academia and industry is a necessary component in achieving the ambition of sustainable energy generation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Progress in Energy and Combustion Science
Progress in Energy and Combustion Science 工程技术-工程:化工
CiteScore
59.30
自引率
0.70%
发文量
44
审稿时长
3 months
期刊介绍: Progress in Energy and Combustion Science (PECS) publishes review articles covering all aspects of energy and combustion science. These articles offer a comprehensive, in-depth overview, evaluation, and discussion of specific topics. Given the importance of climate change and energy conservation, efficient combustion of fossil fuels and the development of sustainable energy systems are emphasized. Environmental protection requires limiting pollutants, including greenhouse gases, emitted from combustion and other energy-intensive systems. Additionally, combustion plays a vital role in process technology and materials science. PECS features articles authored by internationally recognized experts in combustion, flames, fuel science and technology, and sustainable energy solutions. Each volume includes specially commissioned review articles providing orderly and concise surveys and scientific discussions on various aspects of combustion and energy. While not overly lengthy, these articles allow authors to thoroughly and comprehensively explore their subjects. They serve as valuable resources for researchers seeking knowledge beyond their own fields and for students and engineers in government and industrial research seeking comprehensive reviews and practical solutions.
期刊最新文献
Turbulent combustion modeling for internal combustion engine CFD: A review Modeling and optimization of anaerobic digestion technology: Current status and future outlook Progress in multiscale research on calcium-looping for thermochemical energy storage: From materials to systems Flame stabilization and emission characteristics of ammonia combustion in lab-scale gas turbine combustors: Recent progress and prospects A comprehensive review of liquid fuel droplet evaporation and combustion behavior with carbon-based nanoparticles
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1