作业车间调度遗传规划中的多目标距离度量方法

S. Salama, T. Kaihara, N. Fujii, D. Kokuryo
{"title":"作业车间调度遗传规划中的多目标距离度量方法","authors":"S. Salama, T. Kaihara, N. Fujii, D. Kokuryo","doi":"10.20965/ijat.2022.p0296","DOIUrl":null,"url":null,"abstract":"The goal of the Fourth Industrial Revolution is to develop smart factories that ensure flexibility and adaptability in complex production environments, without human intervention. Smart factories are based on three main pillars: integration through digitalization, employment of flexible structures, and the use of artificial intelligence (AI) methods. Genetic programming (GP) is one of the most promising AI approaches used in the automated design of production-scheduling rules. However, promoting diversity and controlling the bloating effect are major challenges to the success of GP algorithms in developing production-scheduling rules that deliver high-quality solutions. Therefore, we introduced a multi-objective technique to increase the diversity among GP individuals while considering the program length as an objective to avoid the bloating effect. The proposed approach employs a new diversity metric to measure the distance between GP individuals and the best rule in the current generation. Subsequently, the non-dominated sorting genetic algorithm II (NSGA-II) was used to select individuals based on three objectives: solution quality, similarity value, and program length. To assess the effectiveness of the proposed approach, we compare the two versions with three GP methods in the literature in terms of automatically generating dispatching rules on 10 benchmark instances of the job-shop scheduling problem. The experimental results show that the proposed distance measure enhances the phenotypic diversity of individuals, resulting in improved fitness values without the need for additional fitness assessments. In addition, the integration of NSGA-II with the GP algorithm facilitates the evolution of superior job shop dispatching rules with high diversity and shorter lengths under the makespan and mean tardiness objectives.","PeriodicalId":13583,"journal":{"name":"Int. J. Autom. Technol.","volume":"16 1 1","pages":"296-308"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Multi-Objective Approach with a Distance Metric in Genetic Programming for Job Shop Scheduling\",\"authors\":\"S. Salama, T. Kaihara, N. Fujii, D. Kokuryo\",\"doi\":\"10.20965/ijat.2022.p0296\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The goal of the Fourth Industrial Revolution is to develop smart factories that ensure flexibility and adaptability in complex production environments, without human intervention. Smart factories are based on three main pillars: integration through digitalization, employment of flexible structures, and the use of artificial intelligence (AI) methods. Genetic programming (GP) is one of the most promising AI approaches used in the automated design of production-scheduling rules. However, promoting diversity and controlling the bloating effect are major challenges to the success of GP algorithms in developing production-scheduling rules that deliver high-quality solutions. Therefore, we introduced a multi-objective technique to increase the diversity among GP individuals while considering the program length as an objective to avoid the bloating effect. The proposed approach employs a new diversity metric to measure the distance between GP individuals and the best rule in the current generation. Subsequently, the non-dominated sorting genetic algorithm II (NSGA-II) was used to select individuals based on three objectives: solution quality, similarity value, and program length. To assess the effectiveness of the proposed approach, we compare the two versions with three GP methods in the literature in terms of automatically generating dispatching rules on 10 benchmark instances of the job-shop scheduling problem. The experimental results show that the proposed distance measure enhances the phenotypic diversity of individuals, resulting in improved fitness values without the need for additional fitness assessments. In addition, the integration of NSGA-II with the GP algorithm facilitates the evolution of superior job shop dispatching rules with high diversity and shorter lengths under the makespan and mean tardiness objectives.\",\"PeriodicalId\":13583,\"journal\":{\"name\":\"Int. J. Autom. Technol.\",\"volume\":\"16 1 1\",\"pages\":\"296-308\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Autom. Technol.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.20965/ijat.2022.p0296\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Autom. Technol.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20965/ijat.2022.p0296","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

第四次工业革命的目标是开发智能工厂,确保在复杂的生产环境中具有灵活性和适应性,而无需人为干预。智能工厂基于三个主要支柱:数字化集成,灵活结构的使用以及人工智能(AI)方法的使用。遗传规划(GP)是用于生产调度规则自动化设计的最有前途的人工智能方法之一。然而,促进多样性和控制膨胀效应是GP算法在制定高质量解决方案的生产调度规则方面取得成功的主要挑战。因此,我们引入了一种多目标技术,以增加GP个体之间的多样性,同时考虑程序长度作为目标,以避免腹胀效应。该方法采用一种新的多样性度量来衡量GP个体与当前代最佳规则之间的距离。随后,采用非支配排序遗传算法II (non- dominant sorting genetic algorithm II, NSGA-II),根据解质量、相似度值和程序长度三个目标进行个体选择。为了评估所提出方法的有效性,我们将这两个版本与文献中的三种GP方法在10个作业车间调度问题基准实例上自动生成调度规则方面进行了比较。实验结果表明,所提出的距离度量增强了个体的表型多样性,从而在不需要额外适应度评估的情况下提高了适应度值。此外,将NSGA-II与GP算法相结合,有利于在最大完工时间和平均延迟目标下演化出多样性高、长度短的优作业车间调度规则。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Multi-Objective Approach with a Distance Metric in Genetic Programming for Job Shop Scheduling
The goal of the Fourth Industrial Revolution is to develop smart factories that ensure flexibility and adaptability in complex production environments, without human intervention. Smart factories are based on three main pillars: integration through digitalization, employment of flexible structures, and the use of artificial intelligence (AI) methods. Genetic programming (GP) is one of the most promising AI approaches used in the automated design of production-scheduling rules. However, promoting diversity and controlling the bloating effect are major challenges to the success of GP algorithms in developing production-scheduling rules that deliver high-quality solutions. Therefore, we introduced a multi-objective technique to increase the diversity among GP individuals while considering the program length as an objective to avoid the bloating effect. The proposed approach employs a new diversity metric to measure the distance between GP individuals and the best rule in the current generation. Subsequently, the non-dominated sorting genetic algorithm II (NSGA-II) was used to select individuals based on three objectives: solution quality, similarity value, and program length. To assess the effectiveness of the proposed approach, we compare the two versions with three GP methods in the literature in terms of automatically generating dispatching rules on 10 benchmark instances of the job-shop scheduling problem. The experimental results show that the proposed distance measure enhances the phenotypic diversity of individuals, resulting in improved fitness values without the need for additional fitness assessments. In addition, the integration of NSGA-II with the GP algorithm facilitates the evolution of superior job shop dispatching rules with high diversity and shorter lengths under the makespan and mean tardiness objectives.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Advantages of Injection Mold with Hybrid Process of Metal Powder Bed Fusion and Subtractive Process Experimental Investigation of Spatter Particle Behavior and Improvement in Build Quality in PBF-LB Process Planning with Removal of Melting Penetration and Temper Colors in 5-Axis Hybrid Additive and Subtractive Manufacturing Technique for Introducing Internal Defects with Arbitrary Sizes and Locations in Metals via Additive Manufacturing and Evaluation of Fatigue Properties Editorial: Recent Trends in Additive Manufacturing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1