{"title":"隐私保护分布式网络故障排除-弥合理论与实践之间的差距","authors":"M. Burkhart, X. Dimitropoulos","doi":"10.1145/2043628.2043632","DOIUrl":null,"url":null,"abstract":"Today, there is a fundamental imbalance in cybersecurity. While attackers act more and more globally and coordinated, network defense is limited to examine local information only due to privacy concerns. To overcome this privacy barrier, we use secure multiparty computation (MPC) for the problem of aggregating network data from multiple domains. We first optimize MPC comparison operations for processing high volume data in near real-time by not enforcing protocols to run in a constant number of synchronization rounds. We then implement a complete set of basic MPC primitives in the SEPIA library. For parallel invocations, SEPIA's basic operations are between 35 and several hundred times faster than those of comparable MPC frameworks. Using these operations, we develop four protocols tailored for distributed network monitoring and security applications: the entropy, distinct count, event correlation, and top-k protocols. Extensive evaluation shows that the protocols are suitable for near real-time data aggregation. For example, our top-k protocol PPTKS accurately aggregates counts for 180,000 distributed IP addresses in only a few minutes. Finally, we use SEPIA with real traffic data from 17 customers of a backbone network to collaboratively detect, analyze, and mitigate distributed anomalies. Our work follows a path starting from theory, going to system design, performance evaluation, and ending with measurement. Along this way, it makes a first effort to bridge two very disparate worlds: MPC theory and network monitoring and security practices.","PeriodicalId":50912,"journal":{"name":"ACM Transactions on Information and System Security","volume":"129 1","pages":"31:1-31:30"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"Privacy-preserving distributed network troubleshooting—bridging the gap between theory and practice\",\"authors\":\"M. Burkhart, X. Dimitropoulos\",\"doi\":\"10.1145/2043628.2043632\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Today, there is a fundamental imbalance in cybersecurity. While attackers act more and more globally and coordinated, network defense is limited to examine local information only due to privacy concerns. To overcome this privacy barrier, we use secure multiparty computation (MPC) for the problem of aggregating network data from multiple domains. We first optimize MPC comparison operations for processing high volume data in near real-time by not enforcing protocols to run in a constant number of synchronization rounds. We then implement a complete set of basic MPC primitives in the SEPIA library. For parallel invocations, SEPIA's basic operations are between 35 and several hundred times faster than those of comparable MPC frameworks. Using these operations, we develop four protocols tailored for distributed network monitoring and security applications: the entropy, distinct count, event correlation, and top-k protocols. Extensive evaluation shows that the protocols are suitable for near real-time data aggregation. For example, our top-k protocol PPTKS accurately aggregates counts for 180,000 distributed IP addresses in only a few minutes. Finally, we use SEPIA with real traffic data from 17 customers of a backbone network to collaboratively detect, analyze, and mitigate distributed anomalies. Our work follows a path starting from theory, going to system design, performance evaluation, and ending with measurement. Along this way, it makes a first effort to bridge two very disparate worlds: MPC theory and network monitoring and security practices.\",\"PeriodicalId\":50912,\"journal\":{\"name\":\"ACM Transactions on Information and System Security\",\"volume\":\"129 1\",\"pages\":\"31:1-31:30\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Information and System Security\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2043628.2043632\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Information and System Security","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2043628.2043632","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q","JCRName":"Engineering","Score":null,"Total":0}
Privacy-preserving distributed network troubleshooting—bridging the gap between theory and practice
Today, there is a fundamental imbalance in cybersecurity. While attackers act more and more globally and coordinated, network defense is limited to examine local information only due to privacy concerns. To overcome this privacy barrier, we use secure multiparty computation (MPC) for the problem of aggregating network data from multiple domains. We first optimize MPC comparison operations for processing high volume data in near real-time by not enforcing protocols to run in a constant number of synchronization rounds. We then implement a complete set of basic MPC primitives in the SEPIA library. For parallel invocations, SEPIA's basic operations are between 35 and several hundred times faster than those of comparable MPC frameworks. Using these operations, we develop four protocols tailored for distributed network monitoring and security applications: the entropy, distinct count, event correlation, and top-k protocols. Extensive evaluation shows that the protocols are suitable for near real-time data aggregation. For example, our top-k protocol PPTKS accurately aggregates counts for 180,000 distributed IP addresses in only a few minutes. Finally, we use SEPIA with real traffic data from 17 customers of a backbone network to collaboratively detect, analyze, and mitigate distributed anomalies. Our work follows a path starting from theory, going to system design, performance evaluation, and ending with measurement. Along this way, it makes a first effort to bridge two very disparate worlds: MPC theory and network monitoring and security practices.
期刊介绍:
ISSEC is a scholarly, scientific journal that publishes original research papers in all areas of information and system security, including technologies, systems, applications, and policies.