如何为聚类找到一个好的解释?

Sayan Bandyapadhyay, F. Fomin, P. Golovach, W. Lochet, Nidhi Purohit, Kirill Simonov
{"title":"如何为聚类找到一个好的解释?","authors":"Sayan Bandyapadhyay, F. Fomin, P. Golovach, W. Lochet, Nidhi Purohit, Kirill Simonov","doi":"10.1609/aaai.v36i4.20306","DOIUrl":null,"url":null,"abstract":"k-means and k-median clustering are powerful unsupervised machine learning techniques. However, due to complicated dependences on all the features, it is challenging to interpret the resulting cluster assignments. Moshkovitz, Dasgupta, Rashtchian, and Frost proposed an elegant model of explainable k-means and k-median clustering in ICML 2020. In this model, a decision tree with k leaves provides a straightforward characterization of the data set into clusters. \n \n \n We study two natural algorithmic questions about explainable clustering. (1) For a given clustering, how to find the ``best explanation'' by using a decision tree with k leaves? (2) For a given set of points, how to find a decision tree with k leaves minimizing the k-means/median objective of the resulting explainable clustering?\nTo address the first question, we introduce a new model of explainable clustering. Our model, inspired by the notion of outliers in robust statistics, is the following. We are seeking a small number of points (outliers) whose removal makes the existing clustering well-explainable. For addressing the second question, we initiate the study of the model of Moshkovitz et al. from the perspective of multivariate complexity. Our rigorous algorithmic analysis sheds some light on the influence of parameters like the input size, dimension of the data, the number of outliers, the number of clusters, and the approximation ratio, on the computational complexity of explainable clustering.","PeriodicalId":8496,"journal":{"name":"Artif. Intell.","volume":"115 1","pages":"103948"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"How to Find a Good Explanation for Clustering?\",\"authors\":\"Sayan Bandyapadhyay, F. Fomin, P. Golovach, W. Lochet, Nidhi Purohit, Kirill Simonov\",\"doi\":\"10.1609/aaai.v36i4.20306\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"k-means and k-median clustering are powerful unsupervised machine learning techniques. However, due to complicated dependences on all the features, it is challenging to interpret the resulting cluster assignments. Moshkovitz, Dasgupta, Rashtchian, and Frost proposed an elegant model of explainable k-means and k-median clustering in ICML 2020. In this model, a decision tree with k leaves provides a straightforward characterization of the data set into clusters. \\n \\n \\n We study two natural algorithmic questions about explainable clustering. (1) For a given clustering, how to find the ``best explanation'' by using a decision tree with k leaves? (2) For a given set of points, how to find a decision tree with k leaves minimizing the k-means/median objective of the resulting explainable clustering?\\nTo address the first question, we introduce a new model of explainable clustering. Our model, inspired by the notion of outliers in robust statistics, is the following. We are seeking a small number of points (outliers) whose removal makes the existing clustering well-explainable. For addressing the second question, we initiate the study of the model of Moshkovitz et al. from the perspective of multivariate complexity. Our rigorous algorithmic analysis sheds some light on the influence of parameters like the input size, dimension of the data, the number of outliers, the number of clusters, and the approximation ratio, on the computational complexity of explainable clustering.\",\"PeriodicalId\":8496,\"journal\":{\"name\":\"Artif. Intell.\",\"volume\":\"115 1\",\"pages\":\"103948\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Artif. Intell.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1609/aaai.v36i4.20306\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artif. Intell.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1609/aaai.v36i4.20306","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

K-means和k-median聚类是强大的无监督机器学习技术。然而,由于对所有特征的复杂依赖,解释结果集群分配是具有挑战性的。Moshkovitz、Dasgupta、Rashtchian和Frost在ICML 2020中提出了一个优雅的可解释k-means和k-median聚类模型。在这个模型中,具有k个叶子的决策树提供了将数据集直接表征为簇的方法。我们研究了两个关于可解释聚类的自然算法问题。(1)对于给定的聚类,如何使用一个有k个叶子的决策树来找到“最佳解释”?(2)对于给定的点集,如何找到一个具有k个叶子的决策树,使最终可解释聚类的k均值/中位数目标最小化?为了解决第一个问题,我们引入了一个新的可解释聚类模型。我们的模型受到稳健统计中的异常值概念的启发,如下所示。我们正在寻找少量的点(离群值),它们的移除使现有的聚类可以很好地解释。为了解决第二个问题,我们从多元复杂性的角度开始对Moshkovitz等人的模型进行研究。我们严格的算法分析揭示了输入大小、数据维度、异常值数量、集群数量和近似比率等参数对可解释集群的计算复杂性的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
How to Find a Good Explanation for Clustering?
k-means and k-median clustering are powerful unsupervised machine learning techniques. However, due to complicated dependences on all the features, it is challenging to interpret the resulting cluster assignments. Moshkovitz, Dasgupta, Rashtchian, and Frost proposed an elegant model of explainable k-means and k-median clustering in ICML 2020. In this model, a decision tree with k leaves provides a straightforward characterization of the data set into clusters. We study two natural algorithmic questions about explainable clustering. (1) For a given clustering, how to find the ``best explanation'' by using a decision tree with k leaves? (2) For a given set of points, how to find a decision tree with k leaves minimizing the k-means/median objective of the resulting explainable clustering? To address the first question, we introduce a new model of explainable clustering. Our model, inspired by the notion of outliers in robust statistics, is the following. We are seeking a small number of points (outliers) whose removal makes the existing clustering well-explainable. For addressing the second question, we initiate the study of the model of Moshkovitz et al. from the perspective of multivariate complexity. Our rigorous algorithmic analysis sheds some light on the influence of parameters like the input size, dimension of the data, the number of outliers, the number of clusters, and the approximation ratio, on the computational complexity of explainable clustering.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Entropy Estimation via Uniformization Task-Guided IRL in POMDPs that Scales Measuring power in coalitional games with friends, enemies and allies Defense coordination in security games: Equilibrium analysis and mechanism design Reasoning about general preference relations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1