基于对偶分解的内容中心网络分布式能耗优化算法

Chao Fang, F. Yu, Tao Huang, Jiang Liu, Yun-jie Liu
{"title":"基于对偶分解的内容中心网络分布式能耗优化算法","authors":"Chao Fang, F. Yu, Tao Huang, Jiang Liu, Yun-jie Liu","doi":"10.1109/GLOCOM.2014.7037077","DOIUrl":null,"url":null,"abstract":"Due to the in-network caching capability, Content-Centric Networking (CCN) has emerged as one of the most promising architectures for the diffusion of contents over the Internet. Most existing works on CCN focus on network resource utilization, and the energy efficiency aspect is largely ignored. In this paper, we formulate the energy consumption issue as a Mixed Integer Linear Programming (MILP) problem, and propose a centralized solution via spanning tree heuristic and a fully distributed energy consumption optimization algorithm via dual decomposition (DD) to solve the problem for CCN. The dual decomposition method transforms the centralized energy consumption optimization problem into the router status, link status, and link flow subproblems. Simulation results reveal that the proposed scheme exhibits a fast convergence speed, and achieves superior energy efficiency compared to other widely used schemes in CCN.","PeriodicalId":6492,"journal":{"name":"2014 IEEE Global Communications Conference","volume":"70 1","pages":"1848-1853"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"A distributed energy consumption optimization algorithm for content-centric networks via dual decomposition\",\"authors\":\"Chao Fang, F. Yu, Tao Huang, Jiang Liu, Yun-jie Liu\",\"doi\":\"10.1109/GLOCOM.2014.7037077\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Due to the in-network caching capability, Content-Centric Networking (CCN) has emerged as one of the most promising architectures for the diffusion of contents over the Internet. Most existing works on CCN focus on network resource utilization, and the energy efficiency aspect is largely ignored. In this paper, we formulate the energy consumption issue as a Mixed Integer Linear Programming (MILP) problem, and propose a centralized solution via spanning tree heuristic and a fully distributed energy consumption optimization algorithm via dual decomposition (DD) to solve the problem for CCN. The dual decomposition method transforms the centralized energy consumption optimization problem into the router status, link status, and link flow subproblems. Simulation results reveal that the proposed scheme exhibits a fast convergence speed, and achieves superior energy efficiency compared to other widely used schemes in CCN.\",\"PeriodicalId\":6492,\"journal\":{\"name\":\"2014 IEEE Global Communications Conference\",\"volume\":\"70 1\",\"pages\":\"1848-1853\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE Global Communications Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/GLOCOM.2014.7037077\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE Global Communications Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GLOCOM.2014.7037077","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

由于具有网络内缓存功能,以内容为中心的网络(Content-Centric Networking, CCN)已成为在Internet上传播内容的最有前途的体系结构之一。现有的CCN研究大多集中在网络资源利用方面,而在很大程度上忽略了网络的能效方面。本文将能源消耗问题表述为混合整数线性规划(MILP)问题,并提出了一种基于生成树启发式的集中式解决方案和一种基于对偶分解(DD)的全分布式能源消耗优化算法来解决CCN问题。对重分解方法将集中能耗优化问题分解为路由器状态、链路状态和链路流子问题。仿真结果表明,该方案具有较快的收敛速度,并且与CCN中广泛使用的其他方案相比具有优越的能效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A distributed energy consumption optimization algorithm for content-centric networks via dual decomposition
Due to the in-network caching capability, Content-Centric Networking (CCN) has emerged as one of the most promising architectures for the diffusion of contents over the Internet. Most existing works on CCN focus on network resource utilization, and the energy efficiency aspect is largely ignored. In this paper, we formulate the energy consumption issue as a Mixed Integer Linear Programming (MILP) problem, and propose a centralized solution via spanning tree heuristic and a fully distributed energy consumption optimization algorithm via dual decomposition (DD) to solve the problem for CCN. The dual decomposition method transforms the centralized energy consumption optimization problem into the router status, link status, and link flow subproblems. Simulation results reveal that the proposed scheme exhibits a fast convergence speed, and achieves superior energy efficiency compared to other widely used schemes in CCN.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Power efficient uplink resource allocation in LTE networks under delay QoS constraints Harvest-and-jam: Improving security for wireless energy harvesting cooperative networks Two-way relaying networks with wireless power transfer: Policies design and throughput analysis Resource management in cognitive opportunistic access femtocells with imperfect spectrum sensing Optimizing rule placement in software-defined networks for energy-aware routing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1