{"title":"集成四效吸收循环和热电发电机的纳米流体太阳能系统的能量和火用研究","authors":"M. Mahmoudi, I. Mirzaee, M. Khalilian","doi":"10.5829/ijee.2024.15.01.08","DOIUrl":null,"url":null,"abstract":"The exploitation of nanofluids is the most noteworthy way to make better the rate of heat transfer in solar collectors. Moreover, recently utilizing thermoelectric generators are widely studied to direct the conversion of heat into electricity. The objective of the present study is to deal with a novel multigeneration system that includes a nanofluid-based parabolic trough collector integrated with a quadruple effect absorption refrigeration cycle (cooling), a thermoelectric generator (power), a PEM electrolyzer (hydrogen), vapor generator and domestic water heater. A parametric study is accomplished to consider the effect of significant parameters such as the volume concentration of nanoparticles, solar radiation, absorption system’s generator load, strong solution concentration","PeriodicalId":14591,"journal":{"name":"iranica journal of energy and environment","volume":"24 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Energy and Exergy Study of a Nanofluid-based Solar System Integrated with a Quadruple Effect Absorption Cycle and Thermoelectric Generator\",\"authors\":\"M. Mahmoudi, I. Mirzaee, M. Khalilian\",\"doi\":\"10.5829/ijee.2024.15.01.08\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The exploitation of nanofluids is the most noteworthy way to make better the rate of heat transfer in solar collectors. Moreover, recently utilizing thermoelectric generators are widely studied to direct the conversion of heat into electricity. The objective of the present study is to deal with a novel multigeneration system that includes a nanofluid-based parabolic trough collector integrated with a quadruple effect absorption refrigeration cycle (cooling), a thermoelectric generator (power), a PEM electrolyzer (hydrogen), vapor generator and domestic water heater. A parametric study is accomplished to consider the effect of significant parameters such as the volume concentration of nanoparticles, solar radiation, absorption system’s generator load, strong solution concentration\",\"PeriodicalId\":14591,\"journal\":{\"name\":\"iranica journal of energy and environment\",\"volume\":\"24 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"iranica journal of energy and environment\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5829/ijee.2024.15.01.08\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"iranica journal of energy and environment","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5829/ijee.2024.15.01.08","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Energy and Exergy Study of a Nanofluid-based Solar System Integrated with a Quadruple Effect Absorption Cycle and Thermoelectric Generator
The exploitation of nanofluids is the most noteworthy way to make better the rate of heat transfer in solar collectors. Moreover, recently utilizing thermoelectric generators are widely studied to direct the conversion of heat into electricity. The objective of the present study is to deal with a novel multigeneration system that includes a nanofluid-based parabolic trough collector integrated with a quadruple effect absorption refrigeration cycle (cooling), a thermoelectric generator (power), a PEM electrolyzer (hydrogen), vapor generator and domestic water heater. A parametric study is accomplished to consider the effect of significant parameters such as the volume concentration of nanoparticles, solar radiation, absorption system’s generator load, strong solution concentration