草莓病害在精准农业中的检测

Aguirre Santiago, L. Solaque, Alexandra Velasco
{"title":"草莓病害在精准农业中的检测","authors":"Aguirre Santiago, L. Solaque, Alexandra Velasco","doi":"10.5220/0010616405370544","DOIUrl":null,"url":null,"abstract":": Crop disease detection in precision agriculture has an important impact on farming, improving production, and reducing economic losses. This is why some efforts have been done in this direction. This paper compares 4 object detection algorithms based on deep learning to detect diseases in strawberry crops. Here, we present a step towards detecting the most common diseases to prevent economical losses. The main purpose is to detect mainly three diseases of the strawberry crops, i.e. Botrytis cinerea, Leaf scorch, and Powdery mildew, to take further actions if the crops are unhealthy. We have chosen these three diseases because these are frequent and unpredictable issues, and the risk of infection is high. For this, we trained four algorithms, two based on Single Shot MultiBox Detector and two based on EfficientDet algorithm. We focus the analysis on the two best results based on the mean average precision. We have used Google colab for training, then a Core i5 host computer and an Nvidia Jetson nano were used for testing. We have achieved a detection network with a mean average precision of 81% in the best case, in detecting the three proposed classes. While using an NVIDIA Jetson nano, the accuracy increases up to 86% due to the dedicated GPU that processes Convolutional Neural Networks(CNN).","PeriodicalId":6436,"journal":{"name":"2010 2nd International Asia Conference on Informatics in Control, Automation and Robotics (CAR 2010)","volume":"62 1","pages":"537-544"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Strawberry Disease Detection in Precision Agriculture\",\"authors\":\"Aguirre Santiago, L. Solaque, Alexandra Velasco\",\"doi\":\"10.5220/0010616405370544\",\"DOIUrl\":null,\"url\":null,\"abstract\":\": Crop disease detection in precision agriculture has an important impact on farming, improving production, and reducing economic losses. This is why some efforts have been done in this direction. This paper compares 4 object detection algorithms based on deep learning to detect diseases in strawberry crops. Here, we present a step towards detecting the most common diseases to prevent economical losses. The main purpose is to detect mainly three diseases of the strawberry crops, i.e. Botrytis cinerea, Leaf scorch, and Powdery mildew, to take further actions if the crops are unhealthy. We have chosen these three diseases because these are frequent and unpredictable issues, and the risk of infection is high. For this, we trained four algorithms, two based on Single Shot MultiBox Detector and two based on EfficientDet algorithm. We focus the analysis on the two best results based on the mean average precision. We have used Google colab for training, then a Core i5 host computer and an Nvidia Jetson nano were used for testing. We have achieved a detection network with a mean average precision of 81% in the best case, in detecting the three proposed classes. While using an NVIDIA Jetson nano, the accuracy increases up to 86% due to the dedicated GPU that processes Convolutional Neural Networks(CNN).\",\"PeriodicalId\":6436,\"journal\":{\"name\":\"2010 2nd International Asia Conference on Informatics in Control, Automation and Robotics (CAR 2010)\",\"volume\":\"62 1\",\"pages\":\"537-544\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 2nd International Asia Conference on Informatics in Control, Automation and Robotics (CAR 2010)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5220/0010616405370544\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 2nd International Asia Conference on Informatics in Control, Automation and Robotics (CAR 2010)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5220/0010616405370544","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

精准农业中的作物病害检测对农业生产、提高产量、减少经济损失具有重要影响。这就是为什么在这个方向上做了一些努力。比较了4种基于深度学习的目标检测算法在草莓病害检测中的应用。在这里,我们提出了一个步骤,以检测最常见的疾病,以防止经济损失。主要目的是检测草莓作物的三种病害,即灰孢菌病、烤叶病和白粉病,如果作物不健康,采取进一步的措施。我们之所以选择这三种疾病,是因为它们是频繁和不可预测的问题,而且感染的风险很高。为此,我们训练了4种算法,其中2种基于Single Shot MultiBox Detector算法,2种基于EfficientDet算法。我们重点分析了基于平均精度的两个最佳结果。我们使用Google colab进行训练,然后使用酷睿i5主机和英伟达Jetson nano进行测试。在最好的情况下,我们已经实现了一个平均精度为81%的检测网络,用于检测三个建议的类别。当使用NVIDIA Jetson纳米芯片时,由于专用GPU处理卷积神经网络(CNN),准确率提高到86%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Strawberry Disease Detection in Precision Agriculture
: Crop disease detection in precision agriculture has an important impact on farming, improving production, and reducing economic losses. This is why some efforts have been done in this direction. This paper compares 4 object detection algorithms based on deep learning to detect diseases in strawberry crops. Here, we present a step towards detecting the most common diseases to prevent economical losses. The main purpose is to detect mainly three diseases of the strawberry crops, i.e. Botrytis cinerea, Leaf scorch, and Powdery mildew, to take further actions if the crops are unhealthy. We have chosen these three diseases because these are frequent and unpredictable issues, and the risk of infection is high. For this, we trained four algorithms, two based on Single Shot MultiBox Detector and two based on EfficientDet algorithm. We focus the analysis on the two best results based on the mean average precision. We have used Google colab for training, then a Core i5 host computer and an Nvidia Jetson nano were used for testing. We have achieved a detection network with a mean average precision of 81% in the best case, in detecting the three proposed classes. While using an NVIDIA Jetson nano, the accuracy increases up to 86% due to the dedicated GPU that processes Convolutional Neural Networks(CNN).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Informatics in Control, Automation and Robotics: 18th International Conference, ICINCO 2021 Lieusaint - Paris, France, July 6–8, 2021, Revised Selected Papers A Digital Twin Setup for Safety-aware Optimization of a Cyber-physical System Segmenting Maps by Analyzing Free and Occupied Regions with Voronoi Diagrams Efficient Verification of CPA Lyapunov Functions Open-loop Control of a Soft Arm in Throwing Tasks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1