一种改进的U-Net医学图像分割方法

IF 3.7 3区 计算机科学 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS Journal of Cloud Computing-Advances Systems and Applications Pub Date : 2023-07-01 DOI:10.1109/CSCloud-EdgeCom58631.2023.00057
Zhenzhen Wang, Jia Zhang, Zhihuan Liu, Shaomiao Chen, Danqing Lu
{"title":"一种改进的U-Net医学图像分割方法","authors":"Zhenzhen Wang, Jia Zhang, Zhihuan Liu, Shaomiao Chen, Danqing Lu","doi":"10.1109/CSCloud-EdgeCom58631.2023.00057","DOIUrl":null,"url":null,"abstract":"In many computer-aided spinal imaging and disease diagnosis, automating the segmentation of the spine and cones from CT images is a challenging problem. Therefore, in this paper, we propose a triple channel expansion attention segmentation network based on U-Net for spinal CT images. We design a triple channel expansion attention to solve the problem of low accuracy caused by the loss of important feature information in the downsampling process of ordinary convolution, which uses different sizes of convolution set kernels to extract different features. Then through this attention, we output a feature image for each layer of the down-sampling, and finally skip connection with it during the up-sampling. Finally, many experimental results on VerSe 2019 and VerSe 2020 datasets show that our proposed network is superior to other prior art segmentation networks.","PeriodicalId":56007,"journal":{"name":"Journal of Cloud Computing-Advances Systems and Applications","volume":"27 1","pages":"292-297"},"PeriodicalIF":3.7000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An improved U-Net network for medical image segmentation\",\"authors\":\"Zhenzhen Wang, Jia Zhang, Zhihuan Liu, Shaomiao Chen, Danqing Lu\",\"doi\":\"10.1109/CSCloud-EdgeCom58631.2023.00057\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In many computer-aided spinal imaging and disease diagnosis, automating the segmentation of the spine and cones from CT images is a challenging problem. Therefore, in this paper, we propose a triple channel expansion attention segmentation network based on U-Net for spinal CT images. We design a triple channel expansion attention to solve the problem of low accuracy caused by the loss of important feature information in the downsampling process of ordinary convolution, which uses different sizes of convolution set kernels to extract different features. Then through this attention, we output a feature image for each layer of the down-sampling, and finally skip connection with it during the up-sampling. Finally, many experimental results on VerSe 2019 and VerSe 2020 datasets show that our proposed network is superior to other prior art segmentation networks.\",\"PeriodicalId\":56007,\"journal\":{\"name\":\"Journal of Cloud Computing-Advances Systems and Applications\",\"volume\":\"27 1\",\"pages\":\"292-297\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2023-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Cloud Computing-Advances Systems and Applications\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1109/CSCloud-EdgeCom58631.2023.00057\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cloud Computing-Advances Systems and Applications","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1109/CSCloud-EdgeCom58631.2023.00057","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

在许多计算机辅助脊柱成像和疾病诊断中,从CT图像中自动分割脊柱和锥体是一个具有挑战性的问题。因此,本文提出了一种基于U-Net的脊髓CT图像三通道扩展注意力分割网络。为了解决普通卷积下采样过程中重要特征信息丢失导致准确率低的问题,设计了三通道扩展注意力,使用不同大小的卷积集核提取不同的特征。然后通过这种关注,我们为下采样的每一层输出一个特征图像,最后在上采样时跳过与它的连接。最后,在VerSe 2019和VerSe 2020数据集上的许多实验结果表明,我们提出的网络优于其他现有技术分割网络。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An improved U-Net network for medical image segmentation
In many computer-aided spinal imaging and disease diagnosis, automating the segmentation of the spine and cones from CT images is a challenging problem. Therefore, in this paper, we propose a triple channel expansion attention segmentation network based on U-Net for spinal CT images. We design a triple channel expansion attention to solve the problem of low accuracy caused by the loss of important feature information in the downsampling process of ordinary convolution, which uses different sizes of convolution set kernels to extract different features. Then through this attention, we output a feature image for each layer of the down-sampling, and finally skip connection with it during the up-sampling. Finally, many experimental results on VerSe 2019 and VerSe 2020 datasets show that our proposed network is superior to other prior art segmentation networks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Cloud Computing-Advances Systems and Applications
Journal of Cloud Computing-Advances Systems and Applications Computer Science-Computer Networks and Communications
CiteScore
6.80
自引率
7.50%
发文量
76
审稿时长
75 days
期刊介绍: The Journal of Cloud Computing: Advances, Systems and Applications (JoCCASA) will publish research articles on all aspects of Cloud Computing. Principally, articles will address topics that are core to Cloud Computing, focusing on the Cloud applications, the Cloud systems, and the advances that will lead to the Clouds of the future. Comprehensive review and survey articles that offer up new insights, and lay the foundations for further exploratory and experimental work, are also relevant.
期刊最新文献
Research on electromagnetic vibration energy harvester for cloud-edge-end collaborative architecture in power grid FedEem: a fairness-based asynchronous federated learning mechanism Adaptive device sampling and deadline determination for cloud-based heterogeneous federated learning Review on the application of cloud computing in the sports industry Improving cloud storage and privacy security for digital twin based medical records
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1