通用直升机模型鲁棒控制器设计:人工智能辅助地形规避应用

IF 0.1 4区 工程技术 Q4 ENGINEERING, AEROSPACE Aerospace America Pub Date : 2023-08-27 DOI:10.3390/aerospace10090757
Barış Başpınar
{"title":"通用直升机模型鲁棒控制器设计:人工智能辅助地形规避应用","authors":"Barış Başpınar","doi":"10.3390/aerospace10090757","DOIUrl":null,"url":null,"abstract":"This paper focuses on robust controller design for a generic helicopter model and terrain avoidance problem via artificial intelligence (AI). The helicopter model is presented as a hybrid system that covers hover and forward dynamics. By defining a set of easily accessible parameters, it can be used to simulate the motion of different helicopter types. A robust control structure based on reinforcement learning is proposed to ensure the system is robust against model parameter uncertainties. The developed generic model can be utilized in many helicopter applications that have been attempted to be solved with sampling-based algorithms or reinforcement learning approaches that take the dynamical constraints into consideration. This study also focuses on the helicopter terrain avoidance problem to illustrate how the model can be useful in these types of applications and provide an artificial intelligence-aided solution to terrain avoidance.","PeriodicalId":50845,"journal":{"name":"Aerospace America","volume":"64 1","pages":""},"PeriodicalIF":0.1000,"publicationDate":"2023-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Robust Controller Design for a Generic Helicopter Model: An AI-Aided Application for Terrain Avoidance\",\"authors\":\"Barış Başpınar\",\"doi\":\"10.3390/aerospace10090757\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper focuses on robust controller design for a generic helicopter model and terrain avoidance problem via artificial intelligence (AI). The helicopter model is presented as a hybrid system that covers hover and forward dynamics. By defining a set of easily accessible parameters, it can be used to simulate the motion of different helicopter types. A robust control structure based on reinforcement learning is proposed to ensure the system is robust against model parameter uncertainties. The developed generic model can be utilized in many helicopter applications that have been attempted to be solved with sampling-based algorithms or reinforcement learning approaches that take the dynamical constraints into consideration. This study also focuses on the helicopter terrain avoidance problem to illustrate how the model can be useful in these types of applications and provide an artificial intelligence-aided solution to terrain avoidance.\",\"PeriodicalId\":50845,\"journal\":{\"name\":\"Aerospace America\",\"volume\":\"64 1\",\"pages\":\"\"},\"PeriodicalIF\":0.1000,\"publicationDate\":\"2023-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Aerospace America\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/aerospace10090757\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, AEROSPACE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aerospace America","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/aerospace10090757","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 1

摘要

本文主要研究了通用直升机模型的鲁棒控制器设计和基于人工智能的地形回避问题。直升机模型是一个包含悬停动力学和前向动力学的混合系统。通过定义一组易于访问的参数,它可以用来模拟不同类型直升机的运动。为了保证系统对模型参数的不确定性具有鲁棒性,提出了一种基于强化学习的鲁棒控制结构。所开发的通用模型可用于许多直升机应用,这些应用已尝试使用基于采样的算法或考虑动态约束的强化学习方法来解决。本研究还将重点放在直升机地形回避问题上,以说明该模型如何在这些类型的应用中发挥作用,并提供人工智能辅助的地形回避解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Robust Controller Design for a Generic Helicopter Model: An AI-Aided Application for Terrain Avoidance
This paper focuses on robust controller design for a generic helicopter model and terrain avoidance problem via artificial intelligence (AI). The helicopter model is presented as a hybrid system that covers hover and forward dynamics. By defining a set of easily accessible parameters, it can be used to simulate the motion of different helicopter types. A robust control structure based on reinforcement learning is proposed to ensure the system is robust against model parameter uncertainties. The developed generic model can be utilized in many helicopter applications that have been attempted to be solved with sampling-based algorithms or reinforcement learning approaches that take the dynamical constraints into consideration. This study also focuses on the helicopter terrain avoidance problem to illustrate how the model can be useful in these types of applications and provide an artificial intelligence-aided solution to terrain avoidance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Aerospace America
Aerospace America 工程技术-工程:宇航
自引率
0.00%
发文量
9
审稿时长
4-8 weeks
期刊最新文献
A Novel Digital Twin Framework for Aeroengine Performance Diagnosis GPU Acceleration of CFD Simulations in OpenFOAM Recent Advances in Airfoil Self-Noise Passive Reduction Characteristics of Vortices around Forward Swept Wing at Low Speeds/High Angles of Attack A Digital-Twin-Based Detection and Protection Framework for SDC-Induced Sinkhole and Grayhole Nodes in Satellite Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1