{"title":"在DCE-MRI中应用深度学习进行三阴性乳腺癌分类","authors":"Joel Vidal, R. Martí","doi":"10.1117/12.2625780","DOIUrl":null,"url":null,"abstract":"Triple-negative is one of the most aggressive type of breast cancer for which is also difficult to find an effective treatment. An early diagnosis and a fast and specific treatment are shown to be key aspects for a better prognosis. Current diagnosis of these cases are based on performing a biopsy. This study proposes a non-invasive medical imaging predication method, based on a deep learning architecture, to automatically classify triple-negative tumors in DCE-MRI images. Results are evaluated on an extensive public dataset for different normalizations, data augmentations, learning rates and batch sizes, reaching a state-of-the-art AUC of 0.68.","PeriodicalId":92005,"journal":{"name":"Breast imaging : 11th International Workshop, IWDM 2012, Philadelphia, PA, USA, July 8-11, 2012 : proceedings. International Workshop on Breast Imaging (11th : 2012 : Philadelphia, Pa.)","volume":"118 1","pages":"122860X - 122860X-6"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Using deep learning for triple-negative breast cancer classification in DCE-MRI\",\"authors\":\"Joel Vidal, R. Martí\",\"doi\":\"10.1117/12.2625780\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Triple-negative is one of the most aggressive type of breast cancer for which is also difficult to find an effective treatment. An early diagnosis and a fast and specific treatment are shown to be key aspects for a better prognosis. Current diagnosis of these cases are based on performing a biopsy. This study proposes a non-invasive medical imaging predication method, based on a deep learning architecture, to automatically classify triple-negative tumors in DCE-MRI images. Results are evaluated on an extensive public dataset for different normalizations, data augmentations, learning rates and batch sizes, reaching a state-of-the-art AUC of 0.68.\",\"PeriodicalId\":92005,\"journal\":{\"name\":\"Breast imaging : 11th International Workshop, IWDM 2012, Philadelphia, PA, USA, July 8-11, 2012 : proceedings. International Workshop on Breast Imaging (11th : 2012 : Philadelphia, Pa.)\",\"volume\":\"118 1\",\"pages\":\"122860X - 122860X-6\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Breast imaging : 11th International Workshop, IWDM 2012, Philadelphia, PA, USA, July 8-11, 2012 : proceedings. International Workshop on Breast Imaging (11th : 2012 : Philadelphia, Pa.)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2625780\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Breast imaging : 11th International Workshop, IWDM 2012, Philadelphia, PA, USA, July 8-11, 2012 : proceedings. International Workshop on Breast Imaging (11th : 2012 : Philadelphia, Pa.)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2625780","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

三阴性乳腺癌是最具侵袭性的乳腺癌之一,也很难找到有效的治疗方法。早期诊断和快速特异性治疗是获得更好预后的关键。目前对这些病例的诊断是基于活检。本研究提出了一种基于深度学习架构的无创医学影像预测方法,对DCE-MRI图像中的三阴性肿瘤进行自动分类。结果在一个广泛的公共数据集上进行评估,用于不同的归一化,数据增强,学习率和批大小,达到最先进的AUC为0.68。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Using deep learning for triple-negative breast cancer classification in DCE-MRI
Triple-negative is one of the most aggressive type of breast cancer for which is also difficult to find an effective treatment. An early diagnosis and a fast and specific treatment are shown to be key aspects for a better prognosis. Current diagnosis of these cases are based on performing a biopsy. This study proposes a non-invasive medical imaging predication method, based on a deep learning architecture, to automatically classify triple-negative tumors in DCE-MRI images. Results are evaluated on an extensive public dataset for different normalizations, data augmentations, learning rates and batch sizes, reaching a state-of-the-art AUC of 0.68.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Robustness of a U-net model for different image processing types in segmentation of the mammary gland region Lesion detection in contrast enhanced spectral mammography Correspondence between areas causing recall in breast cancer screening and artificial intelligence findings Lesion detection in digital breast tomosynthesis: method, experiences and results of participating to the DBTex challenge Breast shape estimation and correction in CESM biopsy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1