{"title":"在DCE-MRI中应用深度学习进行三阴性乳腺癌分类","authors":"Joel Vidal, R. Martí","doi":"10.1117/12.2625780","DOIUrl":null,"url":null,"abstract":"Triple-negative is one of the most aggressive type of breast cancer for which is also difficult to find an effective treatment. An early diagnosis and a fast and specific treatment are shown to be key aspects for a better prognosis. Current diagnosis of these cases are based on performing a biopsy. This study proposes a non-invasive medical imaging predication method, based on a deep learning architecture, to automatically classify triple-negative tumors in DCE-MRI images. Results are evaluated on an extensive public dataset for different normalizations, data augmentations, learning rates and batch sizes, reaching a state-of-the-art AUC of 0.68.","PeriodicalId":92005,"journal":{"name":"Breast imaging : 11th International Workshop, IWDM 2012, Philadelphia, PA, USA, July 8-11, 2012 : proceedings. International Workshop on Breast Imaging (11th : 2012 : Philadelphia, Pa.)","volume":"118 1","pages":"122860X - 122860X-6"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Using deep learning for triple-negative breast cancer classification in DCE-MRI\",\"authors\":\"Joel Vidal, R. Martí\",\"doi\":\"10.1117/12.2625780\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Triple-negative is one of the most aggressive type of breast cancer for which is also difficult to find an effective treatment. An early diagnosis and a fast and specific treatment are shown to be key aspects for a better prognosis. Current diagnosis of these cases are based on performing a biopsy. This study proposes a non-invasive medical imaging predication method, based on a deep learning architecture, to automatically classify triple-negative tumors in DCE-MRI images. Results are evaluated on an extensive public dataset for different normalizations, data augmentations, learning rates and batch sizes, reaching a state-of-the-art AUC of 0.68.\",\"PeriodicalId\":92005,\"journal\":{\"name\":\"Breast imaging : 11th International Workshop, IWDM 2012, Philadelphia, PA, USA, July 8-11, 2012 : proceedings. International Workshop on Breast Imaging (11th : 2012 : Philadelphia, Pa.)\",\"volume\":\"118 1\",\"pages\":\"122860X - 122860X-6\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Breast imaging : 11th International Workshop, IWDM 2012, Philadelphia, PA, USA, July 8-11, 2012 : proceedings. International Workshop on Breast Imaging (11th : 2012 : Philadelphia, Pa.)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2625780\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Breast imaging : 11th International Workshop, IWDM 2012, Philadelphia, PA, USA, July 8-11, 2012 : proceedings. International Workshop on Breast Imaging (11th : 2012 : Philadelphia, Pa.)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2625780","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Using deep learning for triple-negative breast cancer classification in DCE-MRI
Triple-negative is one of the most aggressive type of breast cancer for which is also difficult to find an effective treatment. An early diagnosis and a fast and specific treatment are shown to be key aspects for a better prognosis. Current diagnosis of these cases are based on performing a biopsy. This study proposes a non-invasive medical imaging predication method, based on a deep learning architecture, to automatically classify triple-negative tumors in DCE-MRI images. Results are evaluated on an extensive public dataset for different normalizations, data augmentations, learning rates and batch sizes, reaching a state-of-the-art AUC of 0.68.