{"title":"基于GPU的稀疏近似逆预处理算法优化","authors":"Xinyue Chu, Yizhou Wang, Qi Chen, Jiaquan Gao","doi":"10.1016/j.tbench.2023.100087","DOIUrl":null,"url":null,"abstract":"<div><p>In this study, we present an optimization sparse approximate inverse (SPAI) preconditioning algorithm on GPU, called GSPAI-Opt. In GSPAI-Opt, it fuses the advantages of two popular SPAI preconditioning algorithms, and has the following novelties: (1) an optimization strategy is proposed to choose whether to use the constant or non-constant thread group for any sparse pattern of the preprocessor, and (2) a parallel framework of optimizing the SPAI preconditioner is proposed on GPU, and (3) for each component of the preconditioner, a decision tree is established to choose the optimal kernel of computing it. Experimental results validate the effectiveness of GSPAI-Opt.</p></div>","PeriodicalId":100155,"journal":{"name":"BenchCouncil Transactions on Benchmarks, Standards and Evaluations","volume":"2 4","pages":"Article 100087"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772485923000042/pdfft?md5=8592fe298c854dc9f2e85112414f0c44&pid=1-s2.0-S2772485923000042-main.pdf","citationCount":"1","resultStr":"{\"title\":\"Optimizing the sparse approximate inverse preconditioning algorithm on GPU\",\"authors\":\"Xinyue Chu, Yizhou Wang, Qi Chen, Jiaquan Gao\",\"doi\":\"10.1016/j.tbench.2023.100087\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this study, we present an optimization sparse approximate inverse (SPAI) preconditioning algorithm on GPU, called GSPAI-Opt. In GSPAI-Opt, it fuses the advantages of two popular SPAI preconditioning algorithms, and has the following novelties: (1) an optimization strategy is proposed to choose whether to use the constant or non-constant thread group for any sparse pattern of the preprocessor, and (2) a parallel framework of optimizing the SPAI preconditioner is proposed on GPU, and (3) for each component of the preconditioner, a decision tree is established to choose the optimal kernel of computing it. Experimental results validate the effectiveness of GSPAI-Opt.</p></div>\",\"PeriodicalId\":100155,\"journal\":{\"name\":\"BenchCouncil Transactions on Benchmarks, Standards and Evaluations\",\"volume\":\"2 4\",\"pages\":\"Article 100087\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2772485923000042/pdfft?md5=8592fe298c854dc9f2e85112414f0c44&pid=1-s2.0-S2772485923000042-main.pdf\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BenchCouncil Transactions on Benchmarks, Standards and Evaluations\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772485923000042\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BenchCouncil Transactions on Benchmarks, Standards and Evaluations","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772485923000042","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Optimizing the sparse approximate inverse preconditioning algorithm on GPU
In this study, we present an optimization sparse approximate inverse (SPAI) preconditioning algorithm on GPU, called GSPAI-Opt. In GSPAI-Opt, it fuses the advantages of two popular SPAI preconditioning algorithms, and has the following novelties: (1) an optimization strategy is proposed to choose whether to use the constant or non-constant thread group for any sparse pattern of the preprocessor, and (2) a parallel framework of optimizing the SPAI preconditioner is proposed on GPU, and (3) for each component of the preconditioner, a decision tree is established to choose the optimal kernel of computing it. Experimental results validate the effectiveness of GSPAI-Opt.