高阶并发分离逻辑中的交互证明

R. Krebbers, Amin Timany, L. Birkedal
{"title":"高阶并发分离逻辑中的交互证明","authors":"R. Krebbers, Amin Timany, L. Birkedal","doi":"10.1145/3009837.3009855","DOIUrl":null,"url":null,"abstract":"When using a proof assistant to reason in an embedded logic -- like separation logic -- one cannot benefit from the proof contexts and basic tactics of the proof assistant. This results in proofs that are at a too low level of abstraction because they are cluttered with bookkeeping code related to manipulating the object logic. In this paper, we introduce a so-called proof mode that extends the Coq proof assistant with (spatial and non-spatial) named proof contexts for the object logic. We show that thanks to these contexts we can implement high-level tactics for introduction and elimination of the connectives of the object logic, and thereby make reasoning in the embedded logic as seamless as reasoning in the meta logic of the proof assistant. We apply our method to Iris: a state of the art higher-order impredicative concurrent separation logic. We show that our method is very general, and is not just limited to program verification. We demonstrate its generality by formalizing correctness proofs of fine-grained concurrent algorithms, derived constructs of the Iris logic, and a unary and binary logical relation for a language with concurrency, higher-order store, polymorphism, and recursive types. This is the first formalization of a binary logical relation for such an expressive language. We also show how to use the logical relation to prove contextual refinement of fine-grained concurrent algorithms.","PeriodicalId":20657,"journal":{"name":"Proceedings of the 44th ACM SIGPLAN Symposium on Principles of Programming Languages","volume":"42 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"131","resultStr":"{\"title\":\"Interactive proofs in higher-order concurrent separation logic\",\"authors\":\"R. Krebbers, Amin Timany, L. Birkedal\",\"doi\":\"10.1145/3009837.3009855\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"When using a proof assistant to reason in an embedded logic -- like separation logic -- one cannot benefit from the proof contexts and basic tactics of the proof assistant. This results in proofs that are at a too low level of abstraction because they are cluttered with bookkeeping code related to manipulating the object logic. In this paper, we introduce a so-called proof mode that extends the Coq proof assistant with (spatial and non-spatial) named proof contexts for the object logic. We show that thanks to these contexts we can implement high-level tactics for introduction and elimination of the connectives of the object logic, and thereby make reasoning in the embedded logic as seamless as reasoning in the meta logic of the proof assistant. We apply our method to Iris: a state of the art higher-order impredicative concurrent separation logic. We show that our method is very general, and is not just limited to program verification. We demonstrate its generality by formalizing correctness proofs of fine-grained concurrent algorithms, derived constructs of the Iris logic, and a unary and binary logical relation for a language with concurrency, higher-order store, polymorphism, and recursive types. This is the first formalization of a binary logical relation for such an expressive language. We also show how to use the logical relation to prove contextual refinement of fine-grained concurrent algorithms.\",\"PeriodicalId\":20657,\"journal\":{\"name\":\"Proceedings of the 44th ACM SIGPLAN Symposium on Principles of Programming Languages\",\"volume\":\"42 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"131\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 44th ACM SIGPLAN Symposium on Principles of Programming Languages\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3009837.3009855\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 44th ACM SIGPLAN Symposium on Principles of Programming Languages","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3009837.3009855","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 131

摘要

当使用证明助手在嵌入式逻辑(如分离逻辑)中进行推理时,人们无法从证明助手的证明上下文和基本策略中受益。这导致证明的抽象层次过低,因为它们与与操作对象逻辑相关的簿记代码混淆在一起。在本文中,我们引入了一种所谓的证明模式,它扩展了Coq证明助手,为对象逻辑提供了(空间和非空间)命名证明上下文。我们表明,由于这些上下文,我们可以实现高级策略来引入和消除对象逻辑的连接词,从而使嵌入式逻辑中的推理与证明助手的元逻辑中的推理一样无缝。我们将我们的方法应用于Iris:一种先进的高阶预测性并发分离逻辑。我们表明,我们的方法是非常普遍的,而不仅仅局限于程序验证。我们通过形式化细粒度并发算法的正确性证明、Iris逻辑的派生构造以及具有并发性、高阶存储、多态性和递归类型的语言的一元和二元逻辑关系来证明其通用性。这是这种表达性语言的二进制逻辑关系的第一个形式化。我们还展示了如何使用逻辑关系来证明细粒度并发算法的上下文细化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Interactive proofs in higher-order concurrent separation logic
When using a proof assistant to reason in an embedded logic -- like separation logic -- one cannot benefit from the proof contexts and basic tactics of the proof assistant. This results in proofs that are at a too low level of abstraction because they are cluttered with bookkeeping code related to manipulating the object logic. In this paper, we introduce a so-called proof mode that extends the Coq proof assistant with (spatial and non-spatial) named proof contexts for the object logic. We show that thanks to these contexts we can implement high-level tactics for introduction and elimination of the connectives of the object logic, and thereby make reasoning in the embedded logic as seamless as reasoning in the meta logic of the proof assistant. We apply our method to Iris: a state of the art higher-order impredicative concurrent separation logic. We show that our method is very general, and is not just limited to program verification. We demonstrate its generality by formalizing correctness proofs of fine-grained concurrent algorithms, derived constructs of the Iris logic, and a unary and binary logical relation for a language with concurrency, higher-order store, polymorphism, and recursive types. This is the first formalization of a binary logical relation for such an expressive language. We also show how to use the logical relation to prove contextual refinement of fine-grained concurrent algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Gradual refinement types A semantic account of metric preservation A posteriori environment analysis with Pushdown Delta CFA Type systems as macros Complexity verification using guided theorem enumeration
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1