{"title":"各种通用方差:一个面向对象的聚类协方差在R中的实现","authors":"A. Zeileis, Susanne Köll, N. Graham","doi":"10.18637/JSS.V095.I01","DOIUrl":null,"url":null,"abstract":"Clustered covariances or clustered standard errors are very widely used to account for correlated or clustered data, especially in economics, political sciences, or other social sciences. They are employed to adjust the inference following estimation of a standard least-squares regression or generalized linear model estimated by maximum likelihood. Although many publications just refer to \"the\" clustered standard errors, there is a surprisingly wide variety of clustered covariances particularly due to different flavors of bias corrections. Furthermore, while the linear regression model is certainly the most important application case, the same strategies can be employed in more general models (e.g. for zero-inflated, censored, or limited responses). In R, functions for covariances in clustered or panel models have been somewhat scattered or available only for certain modeling functions, notably the (generalized) linear regression model. In contrast, an object-oriented approach to \"robust\" covariance matrix estimation - applicable beyond lm() and glm() - is available in the sandwich package but has been limited to the case of cross-section or time series data. Now, this shortcoming has been corrected in sandwich (starting from version 2.4.0): Based on methods for two generic functions (estfun() and bread()), clustered and panel covariances are now provided in vcovCL(), vcovPL(), and vcovPC(). These are directly applicable to models from many packages, e.g., including MASS, pscl, countreg, betareg, among others. Some empirical illustrations are provided as well as an assessment of the methods' performance in a simulation study.","PeriodicalId":17237,"journal":{"name":"Journal of Statistical Software","volume":"41 1","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2020-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"290","resultStr":"{\"title\":\"Various Versatile Variances: An Object-Oriented Implementation of Clustered Covariances in R\",\"authors\":\"A. Zeileis, Susanne Köll, N. Graham\",\"doi\":\"10.18637/JSS.V095.I01\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Clustered covariances or clustered standard errors are very widely used to account for correlated or clustered data, especially in economics, political sciences, or other social sciences. They are employed to adjust the inference following estimation of a standard least-squares regression or generalized linear model estimated by maximum likelihood. Although many publications just refer to \\\"the\\\" clustered standard errors, there is a surprisingly wide variety of clustered covariances particularly due to different flavors of bias corrections. Furthermore, while the linear regression model is certainly the most important application case, the same strategies can be employed in more general models (e.g. for zero-inflated, censored, or limited responses). In R, functions for covariances in clustered or panel models have been somewhat scattered or available only for certain modeling functions, notably the (generalized) linear regression model. In contrast, an object-oriented approach to \\\"robust\\\" covariance matrix estimation - applicable beyond lm() and glm() - is available in the sandwich package but has been limited to the case of cross-section or time series data. Now, this shortcoming has been corrected in sandwich (starting from version 2.4.0): Based on methods for two generic functions (estfun() and bread()), clustered and panel covariances are now provided in vcovCL(), vcovPL(), and vcovPC(). These are directly applicable to models from many packages, e.g., including MASS, pscl, countreg, betareg, among others. Some empirical illustrations are provided as well as an assessment of the methods' performance in a simulation study.\",\"PeriodicalId\":17237,\"journal\":{\"name\":\"Journal of Statistical Software\",\"volume\":\"41 1\",\"pages\":\"\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2020-10-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"290\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Statistical Software\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.18637/JSS.V095.I01\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Statistical Software","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.18637/JSS.V095.I01","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Various Versatile Variances: An Object-Oriented Implementation of Clustered Covariances in R
Clustered covariances or clustered standard errors are very widely used to account for correlated or clustered data, especially in economics, political sciences, or other social sciences. They are employed to adjust the inference following estimation of a standard least-squares regression or generalized linear model estimated by maximum likelihood. Although many publications just refer to "the" clustered standard errors, there is a surprisingly wide variety of clustered covariances particularly due to different flavors of bias corrections. Furthermore, while the linear regression model is certainly the most important application case, the same strategies can be employed in more general models (e.g. for zero-inflated, censored, or limited responses). In R, functions for covariances in clustered or panel models have been somewhat scattered or available only for certain modeling functions, notably the (generalized) linear regression model. In contrast, an object-oriented approach to "robust" covariance matrix estimation - applicable beyond lm() and glm() - is available in the sandwich package but has been limited to the case of cross-section or time series data. Now, this shortcoming has been corrected in sandwich (starting from version 2.4.0): Based on methods for two generic functions (estfun() and bread()), clustered and panel covariances are now provided in vcovCL(), vcovPL(), and vcovPC(). These are directly applicable to models from many packages, e.g., including MASS, pscl, countreg, betareg, among others. Some empirical illustrations are provided as well as an assessment of the methods' performance in a simulation study.
期刊介绍:
The Journal of Statistical Software (JSS) publishes open-source software and corresponding reproducible articles discussing all aspects of the design, implementation, documentation, application, evaluation, comparison, maintainance and distribution of software dedicated to improvement of state-of-the-art in statistical computing in all areas of empirical research. Open-source code and articles are jointly reviewed and published in this journal and should be accessible to a broad community of practitioners, teachers, and researchers in the field of statistics.