{"title":"基于半模基板集成波导技术的坚固耐用的体上天线","authors":"S. Agneessens, H. Rogier, R. Moro, M. Bozzi","doi":"10.1109/APS.2014.6904488","DOIUrl":null,"url":null,"abstract":"A compact, robust, wearable antenna for body-worn applications in the 2.4 GHz Industrial Medical and Scientific band is designed, fabricated and tested. This novel compact textile cavity backed slot antenna combines a half-mode substrate integrated waveguide topology with an additional row of shorting vias for miniaturization. Excellent free space performance is achieved with a measured 4.6 % impedance bandwidth, maximal gain of 4.7 dBi and radiation efficiency of 81.3 %. On-body measurements reveal minimal frequency detuning when the antenna is worn by a test subject as well as a negligible impedance bandwidth reduction to 4.5 %. The low calculated Specific Absorption Rate of 0.51 W/kg averaged over 1 g of tissue demonstrates high antenna body isolation. Therefore, this design is an attractive option as antenna in smart textile systems.","PeriodicalId":6663,"journal":{"name":"2014 IEEE Antennas and Propagation Society International Symposium (APSURSI)","volume":"23 1","pages":"313-314"},"PeriodicalIF":0.0000,"publicationDate":"2014-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Robust, wearable, on-body antenna relying on half mode substrate integrated waveguide techniques\",\"authors\":\"S. Agneessens, H. Rogier, R. Moro, M. Bozzi\",\"doi\":\"10.1109/APS.2014.6904488\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A compact, robust, wearable antenna for body-worn applications in the 2.4 GHz Industrial Medical and Scientific band is designed, fabricated and tested. This novel compact textile cavity backed slot antenna combines a half-mode substrate integrated waveguide topology with an additional row of shorting vias for miniaturization. Excellent free space performance is achieved with a measured 4.6 % impedance bandwidth, maximal gain of 4.7 dBi and radiation efficiency of 81.3 %. On-body measurements reveal minimal frequency detuning when the antenna is worn by a test subject as well as a negligible impedance bandwidth reduction to 4.5 %. The low calculated Specific Absorption Rate of 0.51 W/kg averaged over 1 g of tissue demonstrates high antenna body isolation. Therefore, this design is an attractive option as antenna in smart textile systems.\",\"PeriodicalId\":6663,\"journal\":{\"name\":\"2014 IEEE Antennas and Propagation Society International Symposium (APSURSI)\",\"volume\":\"23 1\",\"pages\":\"313-314\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-07-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE Antennas and Propagation Society International Symposium (APSURSI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/APS.2014.6904488\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE Antennas and Propagation Society International Symposium (APSURSI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APS.2014.6904488","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A compact, robust, wearable antenna for body-worn applications in the 2.4 GHz Industrial Medical and Scientific band is designed, fabricated and tested. This novel compact textile cavity backed slot antenna combines a half-mode substrate integrated waveguide topology with an additional row of shorting vias for miniaturization. Excellent free space performance is achieved with a measured 4.6 % impedance bandwidth, maximal gain of 4.7 dBi and radiation efficiency of 81.3 %. On-body measurements reveal minimal frequency detuning when the antenna is worn by a test subject as well as a negligible impedance bandwidth reduction to 4.5 %. The low calculated Specific Absorption Rate of 0.51 W/kg averaged over 1 g of tissue demonstrates high antenna body isolation. Therefore, this design is an attractive option as antenna in smart textile systems.