乌托邦约束多目标优化进化算法

IF 1.7 4区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Journal of Experimental & Theoretical Artificial Intelligence Pub Date : 2022-02-27 DOI:10.1080/0952813X.2022.2035826
P. Varshini, S. Baskar, S. T. Selvi
{"title":"乌托邦约束多目标优化进化算法","authors":"P. Varshini, S. Baskar, S. T. Selvi","doi":"10.1080/0952813X.2022.2035826","DOIUrl":null,"url":null,"abstract":"ABSTRACT A new multiobjective evolutionary optimisation algorithm (MOEA) to solve multimodal, multidimensional, nonconvex, nonlinear, dynamic multiobjective optimisation problems (MOPs) is the need of the hour. The quality of an MOEA lies in a good balance between the exploration and exploitation stages of the MOEA. Utopia constrained MOEA (U-MOEA) is proposed in this paper that improves the exploitation in the replacement step to achieve a perfect balance between exploration and exploitation. The proposed U-MOEA is tested on benchmark MOPs and a multivariable controller design problem. The performance of the proposed algorithm is also compared with other MOEAs such as NSGA-II and ICMDRA concerning hyper volume, nondomination count, combined Pareto set metric, and Cmetric . The performance metrics show better hyper volume and spread metric values for the proposed algorithm, indicating the ability in attaining trade-off region closeness along with diversified Pareto front for U-MOEA when compared to the other two algorithms. Results clearly show that the proposed U-MOEA produces good convergence, diversity characteristics with many numbers of trade-off solutions in a Pareto front.","PeriodicalId":15677,"journal":{"name":"Journal of Experimental & Theoretical Artificial Intelligence","volume":"19 1","pages":"955 - 971"},"PeriodicalIF":1.7000,"publicationDate":"2022-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Utopia constrained multi objective optimisation evolutionary algorithm\",\"authors\":\"P. Varshini, S. Baskar, S. T. Selvi\",\"doi\":\"10.1080/0952813X.2022.2035826\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT A new multiobjective evolutionary optimisation algorithm (MOEA) to solve multimodal, multidimensional, nonconvex, nonlinear, dynamic multiobjective optimisation problems (MOPs) is the need of the hour. The quality of an MOEA lies in a good balance between the exploration and exploitation stages of the MOEA. Utopia constrained MOEA (U-MOEA) is proposed in this paper that improves the exploitation in the replacement step to achieve a perfect balance between exploration and exploitation. The proposed U-MOEA is tested on benchmark MOPs and a multivariable controller design problem. The performance of the proposed algorithm is also compared with other MOEAs such as NSGA-II and ICMDRA concerning hyper volume, nondomination count, combined Pareto set metric, and Cmetric . The performance metrics show better hyper volume and spread metric values for the proposed algorithm, indicating the ability in attaining trade-off region closeness along with diversified Pareto front for U-MOEA when compared to the other two algorithms. Results clearly show that the proposed U-MOEA produces good convergence, diversity characteristics with many numbers of trade-off solutions in a Pareto front.\",\"PeriodicalId\":15677,\"journal\":{\"name\":\"Journal of Experimental & Theoretical Artificial Intelligence\",\"volume\":\"19 1\",\"pages\":\"955 - 971\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2022-02-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Experimental & Theoretical Artificial Intelligence\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1080/0952813X.2022.2035826\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Experimental & Theoretical Artificial Intelligence","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1080/0952813X.2022.2035826","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

一种新的多目标进化优化算法(MOEA)可以解决多模态、多维、非凸、非线性、动态的多目标优化问题(MOPs)。科学评价的质量取决于科学评价在勘探阶段和开发阶段之间的平衡。本文提出了乌托邦约束MOEA (Utopia constrained MOEA, U-MOEA),改进了替代阶段的开发,实现了探索与开发的完美平衡。在基准MOPs和多变量控制器设计问题上对所提出的U-MOEA进行了测试。并将该算法的性能与NSGA-II和ICMDRA等moea进行了超体积、非支配计数、组合Pareto集度量和Cmetric的比较。性能指标显示,该算法具有更好的超容量和扩展度量值,表明与其他两种算法相比,该算法能够实现U-MOEA的权衡区域接近性和多样化的Pareto前沿。结果表明,所提出的U-MOEA具有较好的收敛性和多样性,在Pareto前沿存在大量的权衡解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Utopia constrained multi objective optimisation evolutionary algorithm
ABSTRACT A new multiobjective evolutionary optimisation algorithm (MOEA) to solve multimodal, multidimensional, nonconvex, nonlinear, dynamic multiobjective optimisation problems (MOPs) is the need of the hour. The quality of an MOEA lies in a good balance between the exploration and exploitation stages of the MOEA. Utopia constrained MOEA (U-MOEA) is proposed in this paper that improves the exploitation in the replacement step to achieve a perfect balance between exploration and exploitation. The proposed U-MOEA is tested on benchmark MOPs and a multivariable controller design problem. The performance of the proposed algorithm is also compared with other MOEAs such as NSGA-II and ICMDRA concerning hyper volume, nondomination count, combined Pareto set metric, and Cmetric . The performance metrics show better hyper volume and spread metric values for the proposed algorithm, indicating the ability in attaining trade-off region closeness along with diversified Pareto front for U-MOEA when compared to the other two algorithms. Results clearly show that the proposed U-MOEA produces good convergence, diversity characteristics with many numbers of trade-off solutions in a Pareto front.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.10
自引率
4.50%
发文量
89
审稿时长
>12 weeks
期刊介绍: Journal of Experimental & Theoretical Artificial Intelligence (JETAI) is a world leading journal dedicated to publishing high quality, rigorously reviewed, original papers in artificial intelligence (AI) research. The journal features work in all subfields of AI research and accepts both theoretical and applied research. Topics covered include, but are not limited to, the following: • cognitive science • games • learning • knowledge representation • memory and neural system modelling • perception • problem-solving
期刊最新文献
Occlusive target recognition method of sorting robot based on anchor-free detection network An effectual underwater image enhancement framework using adaptive trans-resunet ++ with attention mechanism An experimental study of sentiment classification using deep-based models with various word embedding techniques Sign language video to text conversion via optimised LSTM with improved motion estimation An efficient safest route prediction-based route discovery mechanism for drivers using improved golden tortoise beetle optimizer
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1