仿生软机器鱼,用于水下无线控制滑翔运动

Jinwoo Lee, Yeosang Yoon, H. Park, Joonhwa Choi, Yeong-Tae Jung, Seung Hwan Ko, W. Yeo
{"title":"仿生软机器鱼,用于水下无线控制滑翔运动","authors":"Jinwoo Lee, Yeosang Yoon, H. Park, Joonhwa Choi, Yeong-Tae Jung, Seung Hwan Ko, W. Yeo","doi":"10.1002/aisy.202100271","DOIUrl":null,"url":null,"abstract":"Animal locomotion offers valuable references as it is a critical component of survival as animals adapting to a specific environment. Especially, underwater locomotion poses a challenge because water exerts a high antagonistic drag force against the direction of progress. However, marine vertebrates usually use much lower aerobic energy for locomotion than aerial or terrestrial vertebrates due to their unique intermittent gliding locomotion. None of the prior works demonstrate the locomotive strategies of marine vertebrates. Herein, an untethered soft robotic fish capable of reconstructing the marine vertebrates’ effective locomotion and traveling underwater by controlling localized buoyancy with thermoelectric pneumatic actuators is introduced. The actuators enable both heating and cooling to control a localized buoyancy while providing a substantial driving force to the system. Besides mimicking the locomotion, the bidirectional communication system enables the untethered delivery of commands to the underwater subject and real‐time acquisition of the robotic fish's physical information. Underwater imaging validates the fish's practical use as a drone, allowing for inspecting the aquatic environment that is not easily accessible to humans. Future work studies the operation of the robotic fish as a collective swarm to examine a broader range of the underwater area and conduct various strategic missions.","PeriodicalId":7187,"journal":{"name":"Advanced Intelligent Systems","volume":"15 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Bioinspired Soft Robotic Fish for Wireless Underwater Control of Gliding Locomotion\",\"authors\":\"Jinwoo Lee, Yeosang Yoon, H. Park, Joonhwa Choi, Yeong-Tae Jung, Seung Hwan Ko, W. Yeo\",\"doi\":\"10.1002/aisy.202100271\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Animal locomotion offers valuable references as it is a critical component of survival as animals adapting to a specific environment. Especially, underwater locomotion poses a challenge because water exerts a high antagonistic drag force against the direction of progress. However, marine vertebrates usually use much lower aerobic energy for locomotion than aerial or terrestrial vertebrates due to their unique intermittent gliding locomotion. None of the prior works demonstrate the locomotive strategies of marine vertebrates. Herein, an untethered soft robotic fish capable of reconstructing the marine vertebrates’ effective locomotion and traveling underwater by controlling localized buoyancy with thermoelectric pneumatic actuators is introduced. The actuators enable both heating and cooling to control a localized buoyancy while providing a substantial driving force to the system. Besides mimicking the locomotion, the bidirectional communication system enables the untethered delivery of commands to the underwater subject and real‐time acquisition of the robotic fish's physical information. Underwater imaging validates the fish's practical use as a drone, allowing for inspecting the aquatic environment that is not easily accessible to humans. Future work studies the operation of the robotic fish as a collective swarm to examine a broader range of the underwater area and conduct various strategic missions.\",\"PeriodicalId\":7187,\"journal\":{\"name\":\"Advanced Intelligent Systems\",\"volume\":\"15 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Intelligent Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/aisy.202100271\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Intelligent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/aisy.202100271","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

动物运动提供了有价值的参考,因为它是动物适应特定环境的关键组成部分。特别是,水下运动提出了一个挑战,因为水对前进方向施加了很大的阻力。然而,海洋脊椎动物由于其独特的间歇滑翔运动,通常比空中或陆地脊椎动物运动消耗更少的有氧能量。之前的研究都没有证明海洋脊椎动物的运动策略。本文介绍了一种利用热电气动致动器控制局部浮力的无系绳软机器鱼,该机器鱼能够重建海洋脊椎动物在水下的有效运动和游动。执行器既可以加热也可以冷却,以控制局部浮力,同时为系统提供强大的驱动力。除了模拟运动外,双向通信系统还可以不受束缚地向水下主体发送命令,并实时获取机器鱼的物理信息。水下成像验证了这种鱼作为无人机的实际用途,可以检查人类不容易进入的水生环境。未来的工作是研究机器鱼作为一个集体群体的运作,以检查更大范围的水下区域并执行各种战略任务。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Bioinspired Soft Robotic Fish for Wireless Underwater Control of Gliding Locomotion
Animal locomotion offers valuable references as it is a critical component of survival as animals adapting to a specific environment. Especially, underwater locomotion poses a challenge because water exerts a high antagonistic drag force against the direction of progress. However, marine vertebrates usually use much lower aerobic energy for locomotion than aerial or terrestrial vertebrates due to their unique intermittent gliding locomotion. None of the prior works demonstrate the locomotive strategies of marine vertebrates. Herein, an untethered soft robotic fish capable of reconstructing the marine vertebrates’ effective locomotion and traveling underwater by controlling localized buoyancy with thermoelectric pneumatic actuators is introduced. The actuators enable both heating and cooling to control a localized buoyancy while providing a substantial driving force to the system. Besides mimicking the locomotion, the bidirectional communication system enables the untethered delivery of commands to the underwater subject and real‐time acquisition of the robotic fish's physical information. Underwater imaging validates the fish's practical use as a drone, allowing for inspecting the aquatic environment that is not easily accessible to humans. Future work studies the operation of the robotic fish as a collective swarm to examine a broader range of the underwater area and conduct various strategic missions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Dynamic Tactile Synthetic Tissue: from Soft Robotics to Hybrid Surgical Simulators Maximizing the Synaptic Efficiency of Ferroelectric Tunnel Junction Devices Using a Switching Mechanism Hidden in an Identical Pulse Programming Learning Scheme Enhancing Sensitivity across Scales with Highly Sensitive Hall Effect‐Based Auxetic Tactile Sensors 3D Printed Swordfish‐Like Wireless Millirobot Widened Attention‐Enhanced Atrous Convolutional Network for Efficient Embedded Vision Applications under Resource Constraints
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1