“Dunkelflaute”事件的自动识别:基于卷积神经网络的自动编码器方法

Bowen Li, S. Basu, S. Watson
{"title":"“Dunkelflaute”事件的自动识别:基于卷积神经网络的自动编码器方法","authors":"Bowen Li, S. Basu, S. Watson","doi":"10.1175/aies-d-22-0015.1","DOIUrl":null,"url":null,"abstract":"\nAs wind and solar power play increasingly important roles in the European energy system, unfavourable weather conditions, such as ‘Dunkelflaute’ (extended calm and cloudy periods), will pose ever greater challenges to transmission system operators. Thus, accurate identification and characterization of such events from open data streams (e.g., reanalysis, numerical weather prediction, and climate projection) are going to be crucial. In this study, we propose a two-step, unsupervised deep learning framework (named WISRnet) to automatically encode spatial patterns of wind speed and insolation, and subsequently, identify Dunkelflaute periods from the encoded patterns. Specifically, a deep convolutional neural network (CNN)-based autoencoder (AE) is first employed for feature extraction from the spatial patterns. These two-dimensional CNN-AE patterns encapsulate both amplitude and spatial information in a parsimonious way. In the second step of the WISRnet framework, a variant of the well-known k-means algorithm is used to divide the CNN-AE patterns in region-dependent meteorological clusters. For the validation of the WISRnet framework, aggregated wind and solar power production data from Belgium are used. Using a simple criterion from published literature, all the Dunkelflaute periods are directly identified from this six year-long dataset. Next, each of these periods is associated with a WISRnet-derived cluster. Interestingly, we find that the majority of these Dunkelflaute periods are part of only five clusters (out of twenty five). We show that in lieu of proprietary power production data, the WISRnet framework can identify Dunkelflaute periods from public-domain meteorological data. To further demonstrate the prowess of this framework, it is deployed to identify and characterize Dunkelflaute events in Denmark, Sweden, and the UK.","PeriodicalId":94369,"journal":{"name":"Artificial intelligence for the earth systems","volume":"30 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Automated Identification of ‘Dunkelflaute’ Events: A Convolutional Neural Network-Based Autoencoder Approach\",\"authors\":\"Bowen Li, S. Basu, S. Watson\",\"doi\":\"10.1175/aies-d-22-0015.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\nAs wind and solar power play increasingly important roles in the European energy system, unfavourable weather conditions, such as ‘Dunkelflaute’ (extended calm and cloudy periods), will pose ever greater challenges to transmission system operators. Thus, accurate identification and characterization of such events from open data streams (e.g., reanalysis, numerical weather prediction, and climate projection) are going to be crucial. In this study, we propose a two-step, unsupervised deep learning framework (named WISRnet) to automatically encode spatial patterns of wind speed and insolation, and subsequently, identify Dunkelflaute periods from the encoded patterns. Specifically, a deep convolutional neural network (CNN)-based autoencoder (AE) is first employed for feature extraction from the spatial patterns. These two-dimensional CNN-AE patterns encapsulate both amplitude and spatial information in a parsimonious way. In the second step of the WISRnet framework, a variant of the well-known k-means algorithm is used to divide the CNN-AE patterns in region-dependent meteorological clusters. For the validation of the WISRnet framework, aggregated wind and solar power production data from Belgium are used. Using a simple criterion from published literature, all the Dunkelflaute periods are directly identified from this six year-long dataset. Next, each of these periods is associated with a WISRnet-derived cluster. Interestingly, we find that the majority of these Dunkelflaute periods are part of only five clusters (out of twenty five). We show that in lieu of proprietary power production data, the WISRnet framework can identify Dunkelflaute periods from public-domain meteorological data. To further demonstrate the prowess of this framework, it is deployed to identify and characterize Dunkelflaute events in Denmark, Sweden, and the UK.\",\"PeriodicalId\":94369,\"journal\":{\"name\":\"Artificial intelligence for the earth systems\",\"volume\":\"30 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Artificial intelligence for the earth systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1175/aies-d-22-0015.1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial intelligence for the earth systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1175/aies-d-22-0015.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

随着风能和太阳能在欧洲能源系统中发挥越来越重要的作用,不利的天气条件,如“Dunkelflaute”(长时间无风多云),将给输电系统运营商带来更大的挑战。因此,从开放数据流(例如,再分析、数值天气预报和气候预测)中准确识别和描述此类事件将是至关重要的。在这项研究中,我们提出了一个两步无监督深度学习框架(名为WISRnet)来自动编码风速和日照的空间模式,并随后从编码模式中识别邓克尔弗劳特周期。具体而言,首先采用基于深度卷积神经网络(CNN)的自编码器(AE)从空间模式中提取特征。这些二维CNN-AE模式以一种简洁的方式封装了幅度和空间信息。在WISRnet框架的第二步中,使用了一种众所周知的k-means算法的变体来划分区域相关气象聚类中的CNN-AE模式。为了验证WISRnet框架,使用了来自比利时的汇总风能和太阳能生产数据。使用一个来自已发表文献的简单标准,所有邓克尔弗劳特时期都直接从这个六年的数据集中确定出来。接下来,每个周期都与wisrnet派生的集群相关联。有趣的是,我们发现大多数Dunkelflaute时期只属于5个集群(25个集群中)。我们表明,WISRnet框架可以从公共领域的气象数据中识别邓克尔弗劳特时期,而不是专有的电力生产数据。为了进一步证明这一框架的威力,我们将其用于识别和描述丹麦、瑞典和英国的邓克尔弗劳特事件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Automated Identification of ‘Dunkelflaute’ Events: A Convolutional Neural Network-Based Autoencoder Approach
As wind and solar power play increasingly important roles in the European energy system, unfavourable weather conditions, such as ‘Dunkelflaute’ (extended calm and cloudy periods), will pose ever greater challenges to transmission system operators. Thus, accurate identification and characterization of such events from open data streams (e.g., reanalysis, numerical weather prediction, and climate projection) are going to be crucial. In this study, we propose a two-step, unsupervised deep learning framework (named WISRnet) to automatically encode spatial patterns of wind speed and insolation, and subsequently, identify Dunkelflaute periods from the encoded patterns. Specifically, a deep convolutional neural network (CNN)-based autoencoder (AE) is first employed for feature extraction from the spatial patterns. These two-dimensional CNN-AE patterns encapsulate both amplitude and spatial information in a parsimonious way. In the second step of the WISRnet framework, a variant of the well-known k-means algorithm is used to divide the CNN-AE patterns in region-dependent meteorological clusters. For the validation of the WISRnet framework, aggregated wind and solar power production data from Belgium are used. Using a simple criterion from published literature, all the Dunkelflaute periods are directly identified from this six year-long dataset. Next, each of these periods is associated with a WISRnet-derived cluster. Interestingly, we find that the majority of these Dunkelflaute periods are part of only five clusters (out of twenty five). We show that in lieu of proprietary power production data, the WISRnet framework can identify Dunkelflaute periods from public-domain meteorological data. To further demonstrate the prowess of this framework, it is deployed to identify and characterize Dunkelflaute events in Denmark, Sweden, and the UK.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Transferability and explainability of deep learning emulators for regional climate model projections: Perspectives for future applications Classification of ice particle shapes using machine learning on forward light scattering images Convolutional encoding and normalizing flows: a deep learning approach for offshore wind speed probabilistic forecasting in the Mediterranean Sea Neural networks to find the optimal forcing for offsetting the anthropogenic climate change effects Machine Learning Approach for Spatiotemporal Multivariate Optimization of Environmental Monitoring Sensor Locations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1