通过计算最大不稳定性粗略预测振荡

Z. Rajilić, D. Malivuk Gak
{"title":"通过计算最大不稳定性粗略预测振荡","authors":"Z. Rajilić, D. Malivuk Gak","doi":"10.7251/comen2201111r","DOIUrl":null,"url":null,"abstract":"We use Newton’s second law of motion assuming combination chaos with stochasticity. For a measured time series, one can compute appropriate force and then better understand and roughly predict the behavior of the observed complex system. The force parameter describing instability is of the highest importance. We consider some mechanical experiments and the average global temperature.","PeriodicalId":10617,"journal":{"name":"Contemporary Materials","volume":"14 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ROUGH PREDICTION OF OSCILLATIONS BY COMPUTING MAXIMAL INSTABILITY\",\"authors\":\"Z. Rajilić, D. Malivuk Gak\",\"doi\":\"10.7251/comen2201111r\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We use Newton’s second law of motion assuming combination chaos with stochasticity. For a measured time series, one can compute appropriate force and then better understand and roughly predict the behavior of the observed complex system. The force parameter describing instability is of the highest importance. We consider some mechanical experiments and the average global temperature.\",\"PeriodicalId\":10617,\"journal\":{\"name\":\"Contemporary Materials\",\"volume\":\"14 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Contemporary Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7251/comen2201111r\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Contemporary Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7251/comen2201111r","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们用牛顿第二运动定律假设混沌与随机的组合。对于测量的时间序列,可以计算出适当的力,从而更好地理解和粗略地预测所观察到的复杂系统的行为。描述不稳定性的力参数是最重要的。我们考虑了一些力学实验和全球平均温度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
ROUGH PREDICTION OF OSCILLATIONS BY COMPUTING MAXIMAL INSTABILITY
We use Newton’s second law of motion assuming combination chaos with stochasticity. For a measured time series, one can compute appropriate force and then better understand and roughly predict the behavior of the observed complex system. The force parameter describing instability is of the highest importance. We consider some mechanical experiments and the average global temperature.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
LABORATORY TESTING OF UNSTIMULATED AND STIMULATED SALIVA BUFFERING CAPACITY IN PATIENT AND CONTROL GROUPS AFTER TITRATION WITH HCl AND NaOH NEURAL NETWORKS FOR SOLVING HUXLEY’S EQUATION USE OF 3D-BIOPRINTING IN TISSUE ENGINEERING SCAFFOLD PRODUCTION DETERMINATION OF IRON CONTENT IN NATURAL MINERAL WATER: COMPARISON OF ICP-OES AND SPECTROPHOTOMETRIC METHOD INFLUENCE OF GEOLOGICAL PARAMETERS ON THE INDOOR RADON CONCENTRATION IN THE CITY OF TREBINJE
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1