具有相互垂直平行裂纹系统的材料的有效弹性特性

Abdulla M. Abakarov, Y. Pronina
{"title":"具有相互垂直平行裂纹系统的材料的有效弹性特性","authors":"Abdulla M. Abakarov, Y. Pronina","doi":"10.21638/11701/spbu10.2022.109","DOIUrl":null,"url":null,"abstract":"The effective properties of cracked solids are often expressed in terms of the crack density parameter or its tensor generalization, using the approximation of noninteracting cracks. This approximation remains accurate at sufficiently high crack densities, provided the location of cracks are random. The presented analysis confirms that the effective elastic moduli of a material with ordered fracture structures strongly depend on the linear dimensions of cracks and their mutual arrangement even at a constant crack density. A change in these parameters can cause a noticeable anisotropy of the effective properties of the material even when the eigenvalues of the crack density tensor are equal to each other. The effective elastic characteristics of a material with one doubly periodic system of parallel cracks are compared with those for a material with two mutually perpendicular systems of such cracks in a two-dimensional formulation. The calculations are carried out using the approximate method of M. Kachanov for determining the mean stresses at the cracks edges, applicable for large systems of interacting cracks. Analysis of the obtained results showed that the effective compliance of the material in a certain direction is largely determined by the effects of interaction (shielding and amplification) within a system of parallel cracks perpendicular to this direction. The interaction of this system of cracks with the perpendicular system has a weak effect on the indicated properties in the case of rectangular symmetry of the system. In this case, the interaction of mutually perpendicular systems of cracks leads to a violation of the symmetry of the tensor of effective elastic constants.","PeriodicalId":43738,"journal":{"name":"Vestnik Sankt-Peterburgskogo Universiteta Seriya 10 Prikladnaya Matematika Informatika Protsessy Upravleniya","volume":null,"pages":null},"PeriodicalIF":0.3000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"On the effective elastic properties of a material with mutually perpendicular systems of parallel cracks\",\"authors\":\"Abdulla M. Abakarov, Y. Pronina\",\"doi\":\"10.21638/11701/spbu10.2022.109\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The effective properties of cracked solids are often expressed in terms of the crack density parameter or its tensor generalization, using the approximation of noninteracting cracks. This approximation remains accurate at sufficiently high crack densities, provided the location of cracks are random. The presented analysis confirms that the effective elastic moduli of a material with ordered fracture structures strongly depend on the linear dimensions of cracks and their mutual arrangement even at a constant crack density. A change in these parameters can cause a noticeable anisotropy of the effective properties of the material even when the eigenvalues of the crack density tensor are equal to each other. The effective elastic characteristics of a material with one doubly periodic system of parallel cracks are compared with those for a material with two mutually perpendicular systems of such cracks in a two-dimensional formulation. The calculations are carried out using the approximate method of M. Kachanov for determining the mean stresses at the cracks edges, applicable for large systems of interacting cracks. Analysis of the obtained results showed that the effective compliance of the material in a certain direction is largely determined by the effects of interaction (shielding and amplification) within a system of parallel cracks perpendicular to this direction. The interaction of this system of cracks with the perpendicular system has a weak effect on the indicated properties in the case of rectangular symmetry of the system. In this case, the interaction of mutually perpendicular systems of cracks leads to a violation of the symmetry of the tensor of effective elastic constants.\",\"PeriodicalId\":43738,\"journal\":{\"name\":\"Vestnik Sankt-Peterburgskogo Universiteta Seriya 10 Prikladnaya Matematika Informatika Protsessy Upravleniya\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Vestnik Sankt-Peterburgskogo Universiteta Seriya 10 Prikladnaya Matematika Informatika Protsessy Upravleniya\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21638/11701/spbu10.2022.109\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vestnik Sankt-Peterburgskogo Universiteta Seriya 10 Prikladnaya Matematika Informatika Protsessy Upravleniya","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21638/11701/spbu10.2022.109","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 1

摘要

裂纹固体的有效性质通常用裂纹密度参数或其张量泛化来表示,使用非相互作用裂纹的近似。如果裂纹的位置是随机的,这个近似在足够高的裂纹密度下仍然是准确的。本文的分析证实,即使在裂纹密度恒定的情况下,具有有序断裂结构的材料的有效弹性模量也强烈依赖于裂纹的线性尺寸及其相互排列。即使裂纹密度张量的特征值相等,这些参数的变化也会引起材料有效性能的显著各向异性。用二维公式比较了具有一个双周期平行裂纹系统的材料与具有两个相互垂直的双周期平行裂纹系统的材料的有效弹性特性。计算使用M. Kachanov的近似方法来确定裂纹边缘的平均应力,适用于相互作用裂纹的大型系统。对所得结果的分析表明,材料在某一方向上的有效柔度很大程度上取决于垂直于该方向的平行裂纹系统内的相互作用(屏蔽和放大)效应。在系统为矩形对称的情况下,该裂纹系统与垂直系统的相互作用对所指示的性能影响不大。在这种情况下,相互垂直的裂缝系统的相互作用导致有效弹性常数张量对称性的破坏。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
On the effective elastic properties of a material with mutually perpendicular systems of parallel cracks
The effective properties of cracked solids are often expressed in terms of the crack density parameter or its tensor generalization, using the approximation of noninteracting cracks. This approximation remains accurate at sufficiently high crack densities, provided the location of cracks are random. The presented analysis confirms that the effective elastic moduli of a material with ordered fracture structures strongly depend on the linear dimensions of cracks and their mutual arrangement even at a constant crack density. A change in these parameters can cause a noticeable anisotropy of the effective properties of the material even when the eigenvalues of the crack density tensor are equal to each other. The effective elastic characteristics of a material with one doubly periodic system of parallel cracks are compared with those for a material with two mutually perpendicular systems of such cracks in a two-dimensional formulation. The calculations are carried out using the approximate method of M. Kachanov for determining the mean stresses at the cracks edges, applicable for large systems of interacting cracks. Analysis of the obtained results showed that the effective compliance of the material in a certain direction is largely determined by the effects of interaction (shielding and amplification) within a system of parallel cracks perpendicular to this direction. The interaction of this system of cracks with the perpendicular system has a weak effect on the indicated properties in the case of rectangular symmetry of the system. In this case, the interaction of mutually perpendicular systems of cracks leads to a violation of the symmetry of the tensor of effective elastic constants.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
50.00%
发文量
10
期刊介绍: The journal is the prime outlet for the findings of scientists from the Faculty of applied mathematics and control processes of St. Petersburg State University. It publishes original contributions in all areas of applied mathematics, computer science and control. Vestnik St. Petersburg University: Applied Mathematics. Computer Science. Control Processes features articles that cover the major areas of applied mathematics, computer science and control.
期刊最新文献
Beam dynamics simulation in the linear accelerator used as an injector for the 4th generation Specialized Synchrotron Radiation Source SSRS-4 Dynamic network model of production and investment Algorithm for optimal coloring of square (0,1)-matrices Sound synthesis approach based on the elastic stress analysis of a wrinkled thin film coating Method for solving an optimal control problem in the Mayer form with a quasidifferentiable functional in the presence of phase constraints
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1