基于时钟的时间同步事件相机数据采集平台*

V. Osadcuks, Mihails Pudzs, A. Zujevs, A. Pecka, Arturs Ardavs
{"title":"基于时钟的时间同步事件相机数据采集平台*","authors":"V. Osadcuks, Mihails Pudzs, A. Zujevs, A. Pecka, Arturs Ardavs","doi":"10.1109/ICRA40945.2020.9197303","DOIUrl":null,"url":null,"abstract":"The Dynamic Visual Sensor is considered to be a next-generation vision sensor. Since event-based vision is in its early stage of development, a small number of datasets has been created during the last decade. Dataset creation is motivated by the need for real data from one or many sensors. Temporal accuracy of data in such datasets is crucially important since the events have high temporal resolution measured in microseconds and, during an algorithm evaluation task, such type of visual data is usually fused with data from other types of sensors. The main aim of our research is to achieve the most accurate possible time synchronization between an event camera, LIDAR, and ambient environment sensors during a session of data acquisition. All the mentioned sensors as well as a stereo and a monocular camera were installed on a mobile robotic platform. In this work, a time synchronization architecture and algorithm are proposed for time synchronization with an implementation example on a PIC32 microcontroller. The overall time synchronization approach is scalable for other sensors where there is a need for accurate time synchronization between many nodes. The evaluation results of the proposed solution are reported and discussed in the paper.","PeriodicalId":6859,"journal":{"name":"2020 IEEE International Conference on Robotics and Automation (ICRA)","volume":"27 1","pages":"4695-4701"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Clock-based time sync hronization for an event-based camera dataset acquisition platform *\",\"authors\":\"V. Osadcuks, Mihails Pudzs, A. Zujevs, A. Pecka, Arturs Ardavs\",\"doi\":\"10.1109/ICRA40945.2020.9197303\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Dynamic Visual Sensor is considered to be a next-generation vision sensor. Since event-based vision is in its early stage of development, a small number of datasets has been created during the last decade. Dataset creation is motivated by the need for real data from one or many sensors. Temporal accuracy of data in such datasets is crucially important since the events have high temporal resolution measured in microseconds and, during an algorithm evaluation task, such type of visual data is usually fused with data from other types of sensors. The main aim of our research is to achieve the most accurate possible time synchronization between an event camera, LIDAR, and ambient environment sensors during a session of data acquisition. All the mentioned sensors as well as a stereo and a monocular camera were installed on a mobile robotic platform. In this work, a time synchronization architecture and algorithm are proposed for time synchronization with an implementation example on a PIC32 microcontroller. The overall time synchronization approach is scalable for other sensors where there is a need for accurate time synchronization between many nodes. The evaluation results of the proposed solution are reported and discussed in the paper.\",\"PeriodicalId\":6859,\"journal\":{\"name\":\"2020 IEEE International Conference on Robotics and Automation (ICRA)\",\"volume\":\"27 1\",\"pages\":\"4695-4701\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE International Conference on Robotics and Automation (ICRA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICRA40945.2020.9197303\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Conference on Robotics and Automation (ICRA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICRA40945.2020.9197303","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

动态视觉传感器被认为是下一代视觉传感器。由于基于事件的视觉还处于发展的早期阶段,在过去十年中已经创建了少量的数据集。数据集创建的动机是需要来自一个或多个传感器的真实数据。此类数据集中数据的时间精度至关重要,因为事件具有以微秒为单位测量的高时间分辨率,并且在算法评估任务期间,此类视觉数据通常与来自其他类型传感器的数据融合在一起。我们研究的主要目的是在数据采集过程中实现事件相机、激光雷达和环境传感器之间尽可能精确的时间同步。上述所有传感器以及立体和单目摄像机都安装在移动机器人平台上。本文提出了一种时间同步的体系结构和算法,并给出了在PIC32微控制器上实现的实例。整体时间同步方法可扩展到需要在许多节点之间进行精确时间同步的其他传感器。本文报告并讨论了该方案的评价结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Clock-based time sync hronization for an event-based camera dataset acquisition platform *
The Dynamic Visual Sensor is considered to be a next-generation vision sensor. Since event-based vision is in its early stage of development, a small number of datasets has been created during the last decade. Dataset creation is motivated by the need for real data from one or many sensors. Temporal accuracy of data in such datasets is crucially important since the events have high temporal resolution measured in microseconds and, during an algorithm evaluation task, such type of visual data is usually fused with data from other types of sensors. The main aim of our research is to achieve the most accurate possible time synchronization between an event camera, LIDAR, and ambient environment sensors during a session of data acquisition. All the mentioned sensors as well as a stereo and a monocular camera were installed on a mobile robotic platform. In this work, a time synchronization architecture and algorithm are proposed for time synchronization with an implementation example on a PIC32 microcontroller. The overall time synchronization approach is scalable for other sensors where there is a need for accurate time synchronization between many nodes. The evaluation results of the proposed solution are reported and discussed in the paper.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Abstractions for computing all robotic sensors that suffice to solve a planning problem An Adaptive Supervisory Control Approach to Dynamic Locomotion Under Parametric Uncertainty Interval Search Genetic Algorithm Based on Trajectory to Solve Inverse Kinematics of Redundant Manipulators and Its Application Path-Following Model Predictive Control of Ballbots Identification and evaluation of a force model for multirotor UAVs*
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1