生机勃勃的地球:实施国家标准化的对地观测土地覆盖分类系统,支持可持续发展

IF 4.2 3区 地球科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS Big Earth Data Pub Date : 2021-07-03 DOI:10.1080/20964471.2021.1948179
Christopher J. Owers, R. Lucas, D. Clewley, Carole Planque, S. Punalekar, Belle Tissott, Sean M. T. Chua, P. Bunting, N. Mueller, G. Metternicht
{"title":"生机勃勃的地球:实施国家标准化的对地观测土地覆盖分类系统,支持可持续发展","authors":"Christopher J. Owers, R. Lucas, D. Clewley, Carole Planque, S. Punalekar, Belle Tissott, Sean M. T. Chua, P. Bunting, N. Mueller, G. Metternicht","doi":"10.1080/20964471.2021.1948179","DOIUrl":null,"url":null,"abstract":"ABSTRACT Earth Observation (EO) has been recognised as a key data source for supporting the United Nations Sustainable Development Goals (SDGs). Advances in data availability and analytical capabilities have provided a wide range of users access to global coverage analysis-ready data (ARD). However, ARD does not provide the information required by national agencies tasked with coordinating the implementation of SDGs. Reliable, standardised, scalable mapping of land cover and its change over time and space facilitates informed decision making, providing cohesive methods for target setting and reporting of SDGs. The aim of this study was to implement a global framework for classifying land cover. The Food and Agriculture Organisation’s Land Cover Classification System (FAO LCCS) provides a global land cover taxonomy suitable to comprehensively support SDG target setting and reporting. We present a fully implemented FAO LCCS optimised for EO data; Living Earth, an open-source software package that can be readily applied using existing national EO infrastructure and satellite data. We resolve several semantic challenges of LCCS for consistent EO implementation, including modifications to environmental descriptors, inter-dependency within the modular-hierarchical framework, and increased flexibility associated with limited data availability. To ensure easy adoption of Living Earth for SDG reporting, we identified key environmental descriptors to provide resource allocation recommendations for generating routinely retrieved input parameters. Living Earth provides an optimal platform for global adoption of EO4SDGs ensuring a transparent methodology that allows monitoring to be standardised for all countries.","PeriodicalId":8765,"journal":{"name":"Big Earth Data","volume":"13 1 1","pages":"368 - 390"},"PeriodicalIF":4.2000,"publicationDate":"2021-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Living Earth: Implementing national standardised land cover classification systems for Earth Observation in support of sustainable development\",\"authors\":\"Christopher J. Owers, R. Lucas, D. Clewley, Carole Planque, S. Punalekar, Belle Tissott, Sean M. T. Chua, P. Bunting, N. Mueller, G. Metternicht\",\"doi\":\"10.1080/20964471.2021.1948179\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT Earth Observation (EO) has been recognised as a key data source for supporting the United Nations Sustainable Development Goals (SDGs). Advances in data availability and analytical capabilities have provided a wide range of users access to global coverage analysis-ready data (ARD). However, ARD does not provide the information required by national agencies tasked with coordinating the implementation of SDGs. Reliable, standardised, scalable mapping of land cover and its change over time and space facilitates informed decision making, providing cohesive methods for target setting and reporting of SDGs. The aim of this study was to implement a global framework for classifying land cover. The Food and Agriculture Organisation’s Land Cover Classification System (FAO LCCS) provides a global land cover taxonomy suitable to comprehensively support SDG target setting and reporting. We present a fully implemented FAO LCCS optimised for EO data; Living Earth, an open-source software package that can be readily applied using existing national EO infrastructure and satellite data. We resolve several semantic challenges of LCCS for consistent EO implementation, including modifications to environmental descriptors, inter-dependency within the modular-hierarchical framework, and increased flexibility associated with limited data availability. To ensure easy adoption of Living Earth for SDG reporting, we identified key environmental descriptors to provide resource allocation recommendations for generating routinely retrieved input parameters. Living Earth provides an optimal platform for global adoption of EO4SDGs ensuring a transparent methodology that allows monitoring to be standardised for all countries.\",\"PeriodicalId\":8765,\"journal\":{\"name\":\"Big Earth Data\",\"volume\":\"13 1 1\",\"pages\":\"368 - 390\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2021-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Big Earth Data\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1080/20964471.2021.1948179\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Big Earth Data","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1080/20964471.2021.1948179","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 8

摘要

地球观测(EO)已被公认为支持联合国可持续发展目标(SDGs)的关键数据源。数据可用性和分析能力的进步为广泛的用户提供了获取全球覆盖分析就绪数据(ARD)的途径。然而,开发署并未提供负责协调可持续发展目标实施的国家机构所需的信息。可靠、标准化、可扩展的土地覆盖及其随时间和空间变化的制图有助于知情决策,为可持续发展目标的目标设定和报告提供了统一的方法。本研究的目的是建立一个土地覆盖分类的全球框架。粮农组织土地覆盖分类系统(LCCS)提供了一种适合全面支持可持续发展目标设定和报告的全球土地覆盖分类法。我们提出了一个针对EO数据进行优化的全面实施的粮农组织LCCS;“活着的地球”是一个开源软件包,可以很容易地使用现有的国家地球观测基础设施和卫星数据。为了实现一致的EO,我们解决了LCCS的几个语义挑战,包括对环境描述符的修改,模块化分层框架内的相互依赖性,以及与有限数据可用性相关的灵活性增加。为了确保在可持续发展目标报告中轻松采用“地球生命力”,我们确定了关键的环境描述符,为生成常规检索的输入参数提供资源分配建议。“生命地球”为全球采用eo4sdg提供了一个最佳平台,确保采用透明的方法,使所有国家的监测工作标准化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Living Earth: Implementing national standardised land cover classification systems for Earth Observation in support of sustainable development
ABSTRACT Earth Observation (EO) has been recognised as a key data source for supporting the United Nations Sustainable Development Goals (SDGs). Advances in data availability and analytical capabilities have provided a wide range of users access to global coverage analysis-ready data (ARD). However, ARD does not provide the information required by national agencies tasked with coordinating the implementation of SDGs. Reliable, standardised, scalable mapping of land cover and its change over time and space facilitates informed decision making, providing cohesive methods for target setting and reporting of SDGs. The aim of this study was to implement a global framework for classifying land cover. The Food and Agriculture Organisation’s Land Cover Classification System (FAO LCCS) provides a global land cover taxonomy suitable to comprehensively support SDG target setting and reporting. We present a fully implemented FAO LCCS optimised for EO data; Living Earth, an open-source software package that can be readily applied using existing national EO infrastructure and satellite data. We resolve several semantic challenges of LCCS for consistent EO implementation, including modifications to environmental descriptors, inter-dependency within the modular-hierarchical framework, and increased flexibility associated with limited data availability. To ensure easy adoption of Living Earth for SDG reporting, we identified key environmental descriptors to provide resource allocation recommendations for generating routinely retrieved input parameters. Living Earth provides an optimal platform for global adoption of EO4SDGs ensuring a transparent methodology that allows monitoring to be standardised for all countries.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Big Earth Data
Big Earth Data Earth and Planetary Sciences-Computers in Earth Sciences
CiteScore
7.40
自引率
10.00%
发文量
60
审稿时长
10 weeks
期刊最新文献
A dataset of lake level changes in China between 2002 and 2023 using multi-altimeter data The first 10 m resolution thermokarst lake and pond dataset for the Lena Basin in the 2020 thawing season A high-resolution dataset for lower atmospheric process studies over the Tibetan Plateau from 1981 to 2020 An application of 1D convolution and deep learning to remote sensing modelling of Secchi depth in the northern Adriatic Sea A mediation system for continuous spatial queries on a unified schema using Apache Spark
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1