温度对al99.7铝合金与h11工具钢相互作用动力学的影响

IF 0.6 4区 材料科学 Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY Materiali in tehnologije Pub Date : 2023-07-29 DOI:10.17222/mit.2023.825
M. Vončina, A. Nagode, J. Medved, T. Balaško
{"title":"温度对al99.7铝合金与h11工具钢相互作用动力学的影响","authors":"M. Vončina, A. Nagode, J. Medved, T. Balaško","doi":"10.17222/mit.2023.825","DOIUrl":null,"url":null,"abstract":"Hot-work tool steels are used in casting and hot-forming processes and are subjected to thermal, mechanical and chemical stresses that can cause damage to various parts of the tool. Therefore, knowledge of the interaction between tool steel and molten aluminium alloy is necessary to extend the life of the tool. The present work was carried out to predict the influence of temperature on the interaction kinetics between tool steel and molten aluminium. To investigate the effect of temperature on the dissolution rate of tool steel in molten aluminium and the rate of formation of interaction layers, DSC analysis was performed at two different temperatures, 670 °C and 700 °C, for 12 h. The results were corroborated and supported by a detailed microstructure analysis. \nIt was found that very small temperature changes, in this case 30 °C, significantly affect the kinetics of the interaction layer’s formation between the tool steel H11 and molten aluminium Al99.7. All test methods show a pronounced influence of the test temperature. A significantly faster dissolution was observed in the DSC curve, with the slope of the curve being larger for the specimen tested at 700 °C, which was also confirmed by measurements of the thicknesses of the interaction layers. The thickness of the composite layer was almost the same in both cases, and the temperature has no effect on this layer. The types of interaction layers do not differ from each other.","PeriodicalId":18258,"journal":{"name":"Materiali in tehnologije","volume":"70 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2023-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"INFLUENCE OF TEMPERATURE ON THE INTERACTION KINETICS BETWEEN MOLTEN ALUMINIUM ALLOY AL99.7 AND TOOL STEEL H11\",\"authors\":\"M. Vončina, A. Nagode, J. Medved, T. Balaško\",\"doi\":\"10.17222/mit.2023.825\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Hot-work tool steels are used in casting and hot-forming processes and are subjected to thermal, mechanical and chemical stresses that can cause damage to various parts of the tool. Therefore, knowledge of the interaction between tool steel and molten aluminium alloy is necessary to extend the life of the tool. The present work was carried out to predict the influence of temperature on the interaction kinetics between tool steel and molten aluminium. To investigate the effect of temperature on the dissolution rate of tool steel in molten aluminium and the rate of formation of interaction layers, DSC analysis was performed at two different temperatures, 670 °C and 700 °C, for 12 h. The results were corroborated and supported by a detailed microstructure analysis. \\nIt was found that very small temperature changes, in this case 30 °C, significantly affect the kinetics of the interaction layer’s formation between the tool steel H11 and molten aluminium Al99.7. All test methods show a pronounced influence of the test temperature. A significantly faster dissolution was observed in the DSC curve, with the slope of the curve being larger for the specimen tested at 700 °C, which was also confirmed by measurements of the thicknesses of the interaction layers. The thickness of the composite layer was almost the same in both cases, and the temperature has no effect on this layer. The types of interaction layers do not differ from each other.\",\"PeriodicalId\":18258,\"journal\":{\"name\":\"Materiali in tehnologije\",\"volume\":\"70 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-07-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materiali in tehnologije\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.17222/mit.2023.825\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materiali in tehnologije","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.17222/mit.2023.825","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1

摘要

热加工工具钢用于铸造和热成型工艺,承受热、机械和化学应力,会对工具的各个部分造成损害。因此,了解工具钢和熔融铝合金之间的相互作用对于延长刀具的寿命是必要的。本文研究了温度对工具钢与铝液相互作用动力学的影响。为了研究温度对工具钢在铝液中溶解速度和相互作用层形成速度的影响,在670°C和700°C两种不同温度下进行了12 h的DSC分析。详细的显微组织分析证实了这一结果。研究发现,很小的温度变化(在本实验中为30℃)会显著影响工具钢H11与铝液Al99.7之间相互作用层形成的动力学。所有的试验方法都受到试验温度的显著影响。在DSC曲线上观察到明显更快的溶解,并且在700°C时测试的试样的曲线斜率更大,这也通过测量相互作用层的厚度得到证实。两种情况下复合层厚度基本相同,温度对复合层厚度没有影响。交互层的类型彼此没有区别。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
INFLUENCE OF TEMPERATURE ON THE INTERACTION KINETICS BETWEEN MOLTEN ALUMINIUM ALLOY AL99.7 AND TOOL STEEL H11
Hot-work tool steels are used in casting and hot-forming processes and are subjected to thermal, mechanical and chemical stresses that can cause damage to various parts of the tool. Therefore, knowledge of the interaction between tool steel and molten aluminium alloy is necessary to extend the life of the tool. The present work was carried out to predict the influence of temperature on the interaction kinetics between tool steel and molten aluminium. To investigate the effect of temperature on the dissolution rate of tool steel in molten aluminium and the rate of formation of interaction layers, DSC analysis was performed at two different temperatures, 670 °C and 700 °C, for 12 h. The results were corroborated and supported by a detailed microstructure analysis. It was found that very small temperature changes, in this case 30 °C, significantly affect the kinetics of the interaction layer’s formation between the tool steel H11 and molten aluminium Al99.7. All test methods show a pronounced influence of the test temperature. A significantly faster dissolution was observed in the DSC curve, with the slope of the curve being larger for the specimen tested at 700 °C, which was also confirmed by measurements of the thicknesses of the interaction layers. The thickness of the composite layer was almost the same in both cases, and the temperature has no effect on this layer. The types of interaction layers do not differ from each other.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Materiali in tehnologije
Materiali in tehnologije 工程技术-材料科学:综合
CiteScore
1.30
自引率
0.00%
发文量
73
审稿时长
4-8 weeks
期刊介绍: The journal MATERIALI IN TEHNOLOGIJE/MATERIALS AND TECHNOLOGY is a scientific journal, devoted to original papers and review scientific papers concerned with the areas of fundamental and applied science and technology. Topics of particular interest include metallic materials, inorganic materials, polymers, vacuum technique and lately nanomaterials.
期刊最新文献
SUSTAINABLE AND STRATEGIC SOFT-MAGNETIC Fe-Si-Al ALLOYS PRODUCED BY SECONDARY METALLURGY INFLUENCE OF NICKEL ON THE MICROSTRUCTURAL EVOLUTION AND MECHANICAL PROPERTIES OF LM6-ALLOY-BASED FUNCTIONALLY GRADED COMPOSITE TUBES EFFECT OF ELECTROCHEMICAL PROCESS PARAMETERS ON THE HASTELLOY C-276 ALLOY FOR MACHINING SPEED AND SURFACE-CORROSION FACTOR OPTIMUM DESIGN OF A PERMANENT-MAGNET-BASED SELF-CHARGING DEVICE FOR A SMARTPHONE EFFECT OF STEEL’S THERMAL CONDITION ON THE TRANSFORMATION TEMPERATURES OF TWO HOT-WORK TOOL STEELS WITH INCREASED THERMAL CONDUCTIVITY
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1