冲击荷载作用下砌体结构试验研究及有限元模型修正与数值模拟结果比较

Amir Hoshang Ahakhaveissy, M. Malekshahi
{"title":"冲击荷载作用下砌体结构试验研究及有限元模型修正与数值模拟结果比较","authors":"Amir Hoshang Ahakhaveissy, M. Malekshahi","doi":"10.22075/JRCE.2020.17519.1333","DOIUrl":null,"url":null,"abstract":"Given the sophisticated nature of the blast phenomenon in relation to structures, it is of significance to accurately investigate the structure behavior under blast loads. Due to its rapid and transient nature, blast loading is one of the most important dynamic loadings on the structures. Since masonry materials are widely used as the partition and bearing walls in the existing and newly-built structures, the current research aims to investigate the buried blast effects on unreinforced masonry structures. In order to apply the blast load on a crater as time history, it is required to determine the maximum free field pressure caused by the blast. Accordingly, Finite Element Model Updating (FEMU) was used to calculate the maximum free-field pressure. Thus, for a non-linear dynamic analysis of a blast-loaded structure, a code written in FORTRAN was used. Mohr-Coulomb yield surface with tensile and compression cap and classic Mohr-Coulomb yield surface were used for the structure and the soil modeling, respectively. The comparison of the numerical analysis results in FEMU to field data shows a good consistency between the numerical results and the field data.","PeriodicalId":52415,"journal":{"name":"Journal of Rehabilitation in Civil Engineering","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Experimental Study of Masonry Structure Under Impact Loading and Comparing it with Numerical Modeling Results via Finite Element Model Updating\",\"authors\":\"Amir Hoshang Ahakhaveissy, M. Malekshahi\",\"doi\":\"10.22075/JRCE.2020.17519.1333\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Given the sophisticated nature of the blast phenomenon in relation to structures, it is of significance to accurately investigate the structure behavior under blast loads. Due to its rapid and transient nature, blast loading is one of the most important dynamic loadings on the structures. Since masonry materials are widely used as the partition and bearing walls in the existing and newly-built structures, the current research aims to investigate the buried blast effects on unreinforced masonry structures. In order to apply the blast load on a crater as time history, it is required to determine the maximum free field pressure caused by the blast. Accordingly, Finite Element Model Updating (FEMU) was used to calculate the maximum free-field pressure. Thus, for a non-linear dynamic analysis of a blast-loaded structure, a code written in FORTRAN was used. Mohr-Coulomb yield surface with tensile and compression cap and classic Mohr-Coulomb yield surface were used for the structure and the soil modeling, respectively. The comparison of the numerical analysis results in FEMU to field data shows a good consistency between the numerical results and the field data.\",\"PeriodicalId\":52415,\"journal\":{\"name\":\"Journal of Rehabilitation in Civil Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-05-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Rehabilitation in Civil Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22075/JRCE.2020.17519.1333\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Rehabilitation in Civil Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22075/JRCE.2020.17519.1333","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 1

摘要

考虑到爆炸现象与结构的复杂关系,准确研究爆炸荷载作用下的结构行为具有重要意义。爆炸荷载由于其快速和瞬态的特性,是结构上最重要的动力荷载之一。由于砌体材料在既有和新建结构中广泛用作隔墙和承重墙,因此本研究旨在研究埋地爆炸对无加筋砌体结构的影响。为了将爆炸载荷作为时程施加在弹坑上,需要确定爆炸产生的最大自由场压力。据此,采用有限元模型更新(FEMU)计算最大自由场压力。因此,对于爆炸荷载结构的非线性动力分析,使用了用FORTRAN编写的程序。结构模型和土体模型分别采用带拉压帽的Mohr-Coulomb屈服面和经典Mohr-Coulomb屈服面。FEMU数值分析结果与现场数据的对比表明,数值分析结果与现场数据具有较好的一致性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Experimental Study of Masonry Structure Under Impact Loading and Comparing it with Numerical Modeling Results via Finite Element Model Updating
Given the sophisticated nature of the blast phenomenon in relation to structures, it is of significance to accurately investigate the structure behavior under blast loads. Due to its rapid and transient nature, blast loading is one of the most important dynamic loadings on the structures. Since masonry materials are widely used as the partition and bearing walls in the existing and newly-built structures, the current research aims to investigate the buried blast effects on unreinforced masonry structures. In order to apply the blast load on a crater as time history, it is required to determine the maximum free field pressure caused by the blast. Accordingly, Finite Element Model Updating (FEMU) was used to calculate the maximum free-field pressure. Thus, for a non-linear dynamic analysis of a blast-loaded structure, a code written in FORTRAN was used. Mohr-Coulomb yield surface with tensile and compression cap and classic Mohr-Coulomb yield surface were used for the structure and the soil modeling, respectively. The comparison of the numerical analysis results in FEMU to field data shows a good consistency between the numerical results and the field data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Rehabilitation in Civil Engineering
Journal of Rehabilitation in Civil Engineering Engineering-Building and Construction
CiteScore
1.60
自引率
0.00%
发文量
0
审稿时长
12 weeks
期刊最新文献
Damage Sensitive-Stories of RC and Steel Frames under Critical Mainshock-Aftershock Ground Motions Evaluation of Intermediate Reinforced Concrete Moment Frame subjected to Truck collision Damage Detection in Prestressed Concrete Slabs Using Wavelet Analysis of Vibration Responses in the Time Domain Rehabilitation of Corroded Reinforced Concrete Elements by Rebar Replacement Risk assessment and challenges faced in repairs and rehabilitation of dilapidated buildings.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1