利用DAS和传统检波器相结合的混合电缆进行单井微震监测

Takashi Mizuno, Joël Le Calvez, T. Cuny, Yu Chen
{"title":"利用DAS和传统检波器相结合的混合电缆进行单井微震监测","authors":"Takashi Mizuno, Joël Le Calvez, T. Cuny, Yu Chen","doi":"10.2118/204613-ms","DOIUrl":null,"url":null,"abstract":"\n The single monitoring well configuration is a favorable option for microseismic monitoring considering risk and cost. It has commonly been used in various industries for decades. When using a single monitoring well, we rely among other things on the waveforms’ polarization information to accurately locate detected microseismic events. Additionally, using a large array aperture reduces hypocenter's uncertainty.\n Instead of solely relying on 3C geophones to achieve such objectives, we propose to combine 3C sensors and distributed acoustic sensing (DAS) equipment. It is quite a cost-effective solution, and it enables us to leverage each system's strength while minimizing their respective limitations when considered individually. We present the technical feasibility of such a hybrid microseismic monitoring system using data acquired during a monitoring campaign performed in the Montney formation, Canada. In this dataset, the optic fiber (DAS) is located in the wireline cable used to deploy the 3C geophones; themselves located at the bottom of the DAS wireline cable. Though different acquisition systems are employed for the geophone array and the DAS array, both datasets are GPS time stamped so that data can be processed properly. We scan the DAS data using an STA/LTA event detection, and we integrate with the 3C geophone data. We find the microseismic waveform in both the DAS and the geophone sections and confirm the arrival times are consistent between DAS and geophones. Once datasets are merged, we determine hypocenters using a migration-based event location method for such hybrid array. The uncertainty associated with the event located using the hybrid DAS – geophone array is smaller than for any of the systems looked at independently thanks to the increased array aperture. This case study demonstrates the viability and efficiency of the next generation of a single well acquisition system for microseismic monitoring. Not only does it lower event location uncertainty, but it is also more reliable and cost-effective than the conventional approaches.","PeriodicalId":11094,"journal":{"name":"Day 2 Mon, November 29, 2021","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Single Well Microseismic Monitoring Leveraging Hybrid Cable Combining Both DAS and Traditional Geophones\",\"authors\":\"Takashi Mizuno, Joël Le Calvez, T. Cuny, Yu Chen\",\"doi\":\"10.2118/204613-ms\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n The single monitoring well configuration is a favorable option for microseismic monitoring considering risk and cost. It has commonly been used in various industries for decades. When using a single monitoring well, we rely among other things on the waveforms’ polarization information to accurately locate detected microseismic events. Additionally, using a large array aperture reduces hypocenter's uncertainty.\\n Instead of solely relying on 3C geophones to achieve such objectives, we propose to combine 3C sensors and distributed acoustic sensing (DAS) equipment. It is quite a cost-effective solution, and it enables us to leverage each system's strength while minimizing their respective limitations when considered individually. We present the technical feasibility of such a hybrid microseismic monitoring system using data acquired during a monitoring campaign performed in the Montney formation, Canada. In this dataset, the optic fiber (DAS) is located in the wireline cable used to deploy the 3C geophones; themselves located at the bottom of the DAS wireline cable. Though different acquisition systems are employed for the geophone array and the DAS array, both datasets are GPS time stamped so that data can be processed properly. We scan the DAS data using an STA/LTA event detection, and we integrate with the 3C geophone data. We find the microseismic waveform in both the DAS and the geophone sections and confirm the arrival times are consistent between DAS and geophones. Once datasets are merged, we determine hypocenters using a migration-based event location method for such hybrid array. The uncertainty associated with the event located using the hybrid DAS – geophone array is smaller than for any of the systems looked at independently thanks to the increased array aperture. This case study demonstrates the viability and efficiency of the next generation of a single well acquisition system for microseismic monitoring. Not only does it lower event location uncertainty, but it is also more reliable and cost-effective than the conventional approaches.\",\"PeriodicalId\":11094,\"journal\":{\"name\":\"Day 2 Mon, November 29, 2021\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Day 2 Mon, November 29, 2021\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2118/204613-ms\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 2 Mon, November 29, 2021","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2118/204613-ms","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

考虑到风险和成本,单井监测配置是微震监测的一个有利选择。几十年来,它一直被广泛应用于各个行业。当使用单口监测井时,我们依靠波形的极化信息来准确定位检测到的微地震事件。此外,使用大阵列孔径可以减少震源的不确定性。我们建议将3C传感器与分布式声学传感(DAS)设备相结合,而不是仅仅依靠3C检波器来实现这些目标。这是一个非常经济有效的解决方案,它使我们能够利用每个系统的优势,同时在单独考虑时最大限度地减少它们各自的限制。我们提出了这种混合微震监测系统的技术可行性,该系统使用了在加拿大Montney地层进行的监测活动中获得的数据。在该数据集中,光纤(DAS)位于用于部署3C检波器的有线电缆中;它们位于DAS电缆的底部。虽然检波器阵列和DAS阵列采用不同的采集系统,但两种数据集都是GPS时间戳,以便数据可以正确处理。我们使用STA/LTA事件检测扫描DAS数据,并与3C检波器数据集成。我们在DAS和检波器剖面上都发现了微地震波形,并证实了DAS和检波器的到达时间是一致的。一旦数据集合并,我们使用基于迁移的混合阵列事件定位方法来确定震源。由于增加了阵列孔径,使用混合DAS -检波器阵列定位的事件的不确定性比任何单独观察的系统都要小。该案例研究证明了用于微地震监测的下一代单井采集系统的可行性和有效性。它不仅降低了事件定位的不确定性,而且比传统方法更可靠、更经济。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Single Well Microseismic Monitoring Leveraging Hybrid Cable Combining Both DAS and Traditional Geophones
The single monitoring well configuration is a favorable option for microseismic monitoring considering risk and cost. It has commonly been used in various industries for decades. When using a single monitoring well, we rely among other things on the waveforms’ polarization information to accurately locate detected microseismic events. Additionally, using a large array aperture reduces hypocenter's uncertainty. Instead of solely relying on 3C geophones to achieve such objectives, we propose to combine 3C sensors and distributed acoustic sensing (DAS) equipment. It is quite a cost-effective solution, and it enables us to leverage each system's strength while minimizing their respective limitations when considered individually. We present the technical feasibility of such a hybrid microseismic monitoring system using data acquired during a monitoring campaign performed in the Montney formation, Canada. In this dataset, the optic fiber (DAS) is located in the wireline cable used to deploy the 3C geophones; themselves located at the bottom of the DAS wireline cable. Though different acquisition systems are employed for the geophone array and the DAS array, both datasets are GPS time stamped so that data can be processed properly. We scan the DAS data using an STA/LTA event detection, and we integrate with the 3C geophone data. We find the microseismic waveform in both the DAS and the geophone sections and confirm the arrival times are consistent between DAS and geophones. Once datasets are merged, we determine hypocenters using a migration-based event location method for such hybrid array. The uncertainty associated with the event located using the hybrid DAS – geophone array is smaller than for any of the systems looked at independently thanks to the increased array aperture. This case study demonstrates the viability and efficiency of the next generation of a single well acquisition system for microseismic monitoring. Not only does it lower event location uncertainty, but it is also more reliable and cost-effective than the conventional approaches.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
How Leaders Can Shape the Oil & Gas Industry – Accelerating Innovations Through Business & Environmental Intelligent Systems High Performance Friction Reducer for Slickwater Fracturing Applications: Laboratory Study and Field Implementation CO2 Waterless Fracturing and Huff and Puff in Tight Oil Reservoir Switched Reluctance Motor for Electric Submersible Pump Sparse Water Fracture Channel Detection from Subsurface Sensors Via a Smart Orthogonal Matching Pursuit
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1