多mlp集成Re-RX算法的策略方法

Y. Hayashi, Shota Fujisawa
{"title":"多mlp集成Re-RX算法的策略方法","authors":"Y. Hayashi, Shota Fujisawa","doi":"10.1109/IJCNN.2015.7280387","DOIUrl":null,"url":null,"abstract":"In this paper, we review all our work since 2012 and propose a strategic approach for the Multiple-MLP Ensemble Re- RX algorithm. We first describe the background and procedures of the Recursive-Rule Extraction (Re-RX) algorithm family and its variants, including the Multiple-MLP Ensemble Re-RX algorithm (“Multiple-MLP Ensemble”), which uses the Re-RX algorithm as its core. The proposed strategic approach consists of two processes: non-pruning for the trained neural network ensembles without continuous attributes and a relaxed rule generation scheme using continuous attributes to extract extremely accurate, comprehensible, and concise rules for multi-class mixed datasets (i.e., discrete attributes and continuous attributes). We conducted experiments to find rules for seven kinds of multi-class mixed datasets and compared the accuracy, comprehensibility, and conciseness for the Multiple-MLP Ensemble Re-RX algorithm. The strategic approach for the Multiple-MLP Ensemble Re-RX algorithm outperformed the original Multiple-MLP Ensemble Re- RX algorithm. These results confirm that the strategic approach for the Multiple-MLP Ensemble algorithm facilitates the migration from existing data systems toward new accurate analytic systems and Big Data.","PeriodicalId":6539,"journal":{"name":"2015 International Joint Conference on Neural Networks (IJCNN)","volume":"37 1","pages":"1-8"},"PeriodicalIF":0.0000,"publicationDate":"2015-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Strategic approach for Multiple-MLP Ensemble Re-RX algorithm\",\"authors\":\"Y. Hayashi, Shota Fujisawa\",\"doi\":\"10.1109/IJCNN.2015.7280387\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we review all our work since 2012 and propose a strategic approach for the Multiple-MLP Ensemble Re- RX algorithm. We first describe the background and procedures of the Recursive-Rule Extraction (Re-RX) algorithm family and its variants, including the Multiple-MLP Ensemble Re-RX algorithm (“Multiple-MLP Ensemble”), which uses the Re-RX algorithm as its core. The proposed strategic approach consists of two processes: non-pruning for the trained neural network ensembles without continuous attributes and a relaxed rule generation scheme using continuous attributes to extract extremely accurate, comprehensible, and concise rules for multi-class mixed datasets (i.e., discrete attributes and continuous attributes). We conducted experiments to find rules for seven kinds of multi-class mixed datasets and compared the accuracy, comprehensibility, and conciseness for the Multiple-MLP Ensemble Re-RX algorithm. The strategic approach for the Multiple-MLP Ensemble Re-RX algorithm outperformed the original Multiple-MLP Ensemble Re- RX algorithm. These results confirm that the strategic approach for the Multiple-MLP Ensemble algorithm facilitates the migration from existing data systems toward new accurate analytic systems and Big Data.\",\"PeriodicalId\":6539,\"journal\":{\"name\":\"2015 International Joint Conference on Neural Networks (IJCNN)\",\"volume\":\"37 1\",\"pages\":\"1-8\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-07-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 International Joint Conference on Neural Networks (IJCNN)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IJCNN.2015.7280387\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Joint Conference on Neural Networks (IJCNN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN.2015.7280387","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

在本文中,我们回顾了自2012年以来的所有工作,并提出了一种多mlp集成Re- RX算法的策略方法。我们首先描述了递归规则提取(Re-RX)算法家族及其变体的背景和过程,包括以Re-RX算法为核心的Multiple-MLP Ensemble Re-RX算法(“Multiple-MLP Ensemble”)。提出的策略方法包括两个过程:对没有连续属性的神经网络集合进行非修剪训练,以及使用连续属性对多类混合数据集(即离散属性和连续属性)提取极其准确、可理解和简明的规则的宽松规则生成方案。通过实验寻找7种多类混合数据集的规则,比较了multi- mlp Ensemble Re-RX算法的准确性、可理解性和简洁性。本文提出的multi - mlp Ensemble Re-RX算法优于原multi - mlp Ensemble Re-RX算法。这些结果证实了Multiple-MLP Ensemble算法的策略方法有助于从现有数据系统向新的精确分析系统和大数据的迁移。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Strategic approach for Multiple-MLP Ensemble Re-RX algorithm
In this paper, we review all our work since 2012 and propose a strategic approach for the Multiple-MLP Ensemble Re- RX algorithm. We first describe the background and procedures of the Recursive-Rule Extraction (Re-RX) algorithm family and its variants, including the Multiple-MLP Ensemble Re-RX algorithm (“Multiple-MLP Ensemble”), which uses the Re-RX algorithm as its core. The proposed strategic approach consists of two processes: non-pruning for the trained neural network ensembles without continuous attributes and a relaxed rule generation scheme using continuous attributes to extract extremely accurate, comprehensible, and concise rules for multi-class mixed datasets (i.e., discrete attributes and continuous attributes). We conducted experiments to find rules for seven kinds of multi-class mixed datasets and compared the accuracy, comprehensibility, and conciseness for the Multiple-MLP Ensemble Re-RX algorithm. The strategic approach for the Multiple-MLP Ensemble Re-RX algorithm outperformed the original Multiple-MLP Ensemble Re- RX algorithm. These results confirm that the strategic approach for the Multiple-MLP Ensemble algorithm facilitates the migration from existing data systems toward new accurate analytic systems and Big Data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Efficient conformal regressors using bagged neural nets Repeated play of the SVM game as a means of adaptive classification Unit commitment considering multiple charging and discharging scenarios of plug-in electric vehicles High-dimensional function approximation using local linear embedding A label compression coding approach through maximizing dependence between features and labels for multi-label classification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1