Liang Wang, Ruixia Xue, Ning Cai, Pan Chen, Xiaobo Cui, Wei Wu, Miaomiao Niu, Dongliang Zhang, Zhao Zhang, Xiaosong Zhang
{"title":"大规模可动可变形边界问题的动态并行无网格法","authors":"Liang Wang, Ruixia Xue, Ning Cai, Pan Chen, Xiaobo Cui, Wei Wu, Miaomiao Niu, Dongliang Zhang, Zhao Zhang, Xiaosong Zhang","doi":"10.6688/JISE.202101_37(1).0006","DOIUrl":null,"url":null,"abstract":"This paper puts forward a dynamic parallel meshless computing algorithm that efficiently solves flow fields with largescale motions of movable and deformable boundaries. The partition boundary is updated, as the moving boundary moves across the material interface. Meanwhile, the point clouds near the moving boundary are reconstructed. Our algorithm also solves the workload balance between nodes and information exchange in each region of the computational field, using the governing equations in the arbitrary Lagrangian-Eulerian (ALE) form. The AUFS scheme is extended to calculate the numerical convective flux. Take the interaction between a helium bubble and a shockwave as an example. Our algorithm is applied to compute the flow field with different numbers of discrete points (33,044 and 66,089) and partitions (2 and 4). The results show that our algorithm achieves an efficiency of over 80%, and captures the interaction between shockwaves and the bubble accurately. Hence, our parallel algorithm is suitable for solving problems with largescale motions of deformation boundaries. The research results shed new light on the calculation speed for similar problems.","PeriodicalId":50177,"journal":{"name":"Journal of Information Science and Engineering","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Dynamic Parallel Meshless Method for the Problems with Large-Scale Movable and Deformable Boundary\",\"authors\":\"Liang Wang, Ruixia Xue, Ning Cai, Pan Chen, Xiaobo Cui, Wei Wu, Miaomiao Niu, Dongliang Zhang, Zhao Zhang, Xiaosong Zhang\",\"doi\":\"10.6688/JISE.202101_37(1).0006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper puts forward a dynamic parallel meshless computing algorithm that efficiently solves flow fields with largescale motions of movable and deformable boundaries. The partition boundary is updated, as the moving boundary moves across the material interface. Meanwhile, the point clouds near the moving boundary are reconstructed. Our algorithm also solves the workload balance between nodes and information exchange in each region of the computational field, using the governing equations in the arbitrary Lagrangian-Eulerian (ALE) form. The AUFS scheme is extended to calculate the numerical convective flux. Take the interaction between a helium bubble and a shockwave as an example. Our algorithm is applied to compute the flow field with different numbers of discrete points (33,044 and 66,089) and partitions (2 and 4). The results show that our algorithm achieves an efficiency of over 80%, and captures the interaction between shockwaves and the bubble accurately. Hence, our parallel algorithm is suitable for solving problems with largescale motions of deformation boundaries. The research results shed new light on the calculation speed for similar problems.\",\"PeriodicalId\":50177,\"journal\":{\"name\":\"Journal of Information Science and Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Information Science and Engineering\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.6688/JISE.202101_37(1).0006\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Information Science and Engineering","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.6688/JISE.202101_37(1).0006","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
A Dynamic Parallel Meshless Method for the Problems with Large-Scale Movable and Deformable Boundary
This paper puts forward a dynamic parallel meshless computing algorithm that efficiently solves flow fields with largescale motions of movable and deformable boundaries. The partition boundary is updated, as the moving boundary moves across the material interface. Meanwhile, the point clouds near the moving boundary are reconstructed. Our algorithm also solves the workload balance between nodes and information exchange in each region of the computational field, using the governing equations in the arbitrary Lagrangian-Eulerian (ALE) form. The AUFS scheme is extended to calculate the numerical convective flux. Take the interaction between a helium bubble and a shockwave as an example. Our algorithm is applied to compute the flow field with different numbers of discrete points (33,044 and 66,089) and partitions (2 and 4). The results show that our algorithm achieves an efficiency of over 80%, and captures the interaction between shockwaves and the bubble accurately. Hence, our parallel algorithm is suitable for solving problems with largescale motions of deformation boundaries. The research results shed new light on the calculation speed for similar problems.
期刊介绍:
The Journal of Information Science and Engineering is dedicated to the dissemination of information on computer science, computer engineering, and computer systems. This journal encourages articles on original research in the areas of computer hardware, software, man-machine interface, theory and applications. tutorial papers in the above-mentioned areas, and state-of-the-art papers on various aspects of computer systems and applications.