{"title":"具有孔内偶氮苯基的智能共价有机框架用于光门控离子传输","authors":"Congcong Yin, Zhe Zhang, Zhenshu Si, Xiansong Shi* and Yong Wang*, ","doi":"10.1021/acs.chemmater.2c02239","DOIUrl":null,"url":null,"abstract":"<p >Constructing gated ion transport channels is of profound significance for a variety of applications but remains challenging. Covalent organic frameworks (COFs), as a new class of reticular materials, have demonstrated superiority in controllable transport and precise separation of fine species including ions. Herein, we engineer a light-responsive COF featuring intrapore azobenzene groups for highly efficient and adjustable transport of multivalent ions. Such azobenzene-tagged channels afford a customizable configuration that is precisely switchable at an angstrom level without compromising crystallinity. The membrane-shaped COFs exhibit an exceptional discrimination capability between monovalent and multivalent ions, rendering a K<sup>+</sup>/Al<sup>3+</sup> selectivity of above 6000. Particularly, the azobenzene-decorated ordered nanochannels empower reversible, remote-controlled ion transport, implementing the tailor-made recycling of ionic adjuvants used for antibiotic production. This study reports the design and synthesis of a stimulus-responsive COF and demonstrates the efficient separation of ions by light-gated nanochannels of the smart COF.</p>","PeriodicalId":7,"journal":{"name":"ACS Applied Polymer Materials","volume":"34 20","pages":"9212–9220"},"PeriodicalIF":4.4000,"publicationDate":"2022-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Smart Covalent Organic Frameworks with Intrapore Azobenzene Groups for Light-Gated Ion Transport\",\"authors\":\"Congcong Yin, Zhe Zhang, Zhenshu Si, Xiansong Shi* and Yong Wang*, \",\"doi\":\"10.1021/acs.chemmater.2c02239\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Constructing gated ion transport channels is of profound significance for a variety of applications but remains challenging. Covalent organic frameworks (COFs), as a new class of reticular materials, have demonstrated superiority in controllable transport and precise separation of fine species including ions. Herein, we engineer a light-responsive COF featuring intrapore azobenzene groups for highly efficient and adjustable transport of multivalent ions. Such azobenzene-tagged channels afford a customizable configuration that is precisely switchable at an angstrom level without compromising crystallinity. The membrane-shaped COFs exhibit an exceptional discrimination capability between monovalent and multivalent ions, rendering a K<sup>+</sup>/Al<sup>3+</sup> selectivity of above 6000. Particularly, the azobenzene-decorated ordered nanochannels empower reversible, remote-controlled ion transport, implementing the tailor-made recycling of ionic adjuvants used for antibiotic production. This study reports the design and synthesis of a stimulus-responsive COF and demonstrates the efficient separation of ions by light-gated nanochannels of the smart COF.</p>\",\"PeriodicalId\":7,\"journal\":{\"name\":\"ACS Applied Polymer Materials\",\"volume\":\"34 20\",\"pages\":\"9212–9220\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2022-10-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Polymer Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.chemmater.2c02239\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Polymer Materials","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.chemmater.2c02239","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Smart Covalent Organic Frameworks with Intrapore Azobenzene Groups for Light-Gated Ion Transport
Constructing gated ion transport channels is of profound significance for a variety of applications but remains challenging. Covalent organic frameworks (COFs), as a new class of reticular materials, have demonstrated superiority in controllable transport and precise separation of fine species including ions. Herein, we engineer a light-responsive COF featuring intrapore azobenzene groups for highly efficient and adjustable transport of multivalent ions. Such azobenzene-tagged channels afford a customizable configuration that is precisely switchable at an angstrom level without compromising crystallinity. The membrane-shaped COFs exhibit an exceptional discrimination capability between monovalent and multivalent ions, rendering a K+/Al3+ selectivity of above 6000. Particularly, the azobenzene-decorated ordered nanochannels empower reversible, remote-controlled ion transport, implementing the tailor-made recycling of ionic adjuvants used for antibiotic production. This study reports the design and synthesis of a stimulus-responsive COF and demonstrates the efficient separation of ions by light-gated nanochannels of the smart COF.
期刊介绍:
ACS Applied Polymer Materials is an interdisciplinary journal publishing original research covering all aspects of engineering, chemistry, physics, and biology relevant to applications of polymers.
The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrates fundamental knowledge in the areas of materials, engineering, physics, bioscience, polymer science and chemistry into important polymer applications. The journal is specifically interested in work that addresses relationships among structure, processing, morphology, chemistry, properties, and function as well as work that provide insights into mechanisms critical to the performance of the polymer for applications.