Yulin Yang, B. W. Babu, Chuchu Chen, G. Huang, Liu Ren
{"title":"用于视觉惯性导航的解析组合IMU积分(ACI2)","authors":"Yulin Yang, B. W. Babu, Chuchu Chen, G. Huang, Liu Ren","doi":"10.1109/ICRA40945.2020.9197280","DOIUrl":null,"url":null,"abstract":"Batch optimization based inertial measurement unit (IMU) and visual sensor fusion enables high rate localization for many robotic tasks. However, it remains a challenge to ensure that the batch optimization is computationally efficient while being consistent for high rate IMU measurements without marginalization. In this paper, we derive inspiration from maximum likelihood estimation with partial-fixed estimates to provide a unified approach for handing both IMU preintegration and time-offset calibration. We present a modularized analytic combined IMU integrator (ACI2) with elegant derivations for IMU integrations, bias Jabcobians and related covariances. To simplify our derivation, we also prove that the right Jacobians for Hamilton quaterions and SO(3) are equivalent. Finally, we present a time offset calibrator that operates by fixing the linearization point for a given time offset. This reduces re-integration of the IMU measurements and thus improve efficiency. The proposed ACI2 and time-offset calibration is verified by intensive Monte-Carlo simulations generated from real world datasets. A proof-of-concept real world experiment is also conducted to verify the proposed ACI2 estimator.","PeriodicalId":6859,"journal":{"name":"2020 IEEE International Conference on Robotics and Automation (ICRA)","volume":"126 1","pages":"4680-4686"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Analytic Combined IMU Integration (ACI2) For Visual Inertial Navigation\",\"authors\":\"Yulin Yang, B. W. Babu, Chuchu Chen, G. Huang, Liu Ren\",\"doi\":\"10.1109/ICRA40945.2020.9197280\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Batch optimization based inertial measurement unit (IMU) and visual sensor fusion enables high rate localization for many robotic tasks. However, it remains a challenge to ensure that the batch optimization is computationally efficient while being consistent for high rate IMU measurements without marginalization. In this paper, we derive inspiration from maximum likelihood estimation with partial-fixed estimates to provide a unified approach for handing both IMU preintegration and time-offset calibration. We present a modularized analytic combined IMU integrator (ACI2) with elegant derivations for IMU integrations, bias Jabcobians and related covariances. To simplify our derivation, we also prove that the right Jacobians for Hamilton quaterions and SO(3) are equivalent. Finally, we present a time offset calibrator that operates by fixing the linearization point for a given time offset. This reduces re-integration of the IMU measurements and thus improve efficiency. The proposed ACI2 and time-offset calibration is verified by intensive Monte-Carlo simulations generated from real world datasets. A proof-of-concept real world experiment is also conducted to verify the proposed ACI2 estimator.\",\"PeriodicalId\":6859,\"journal\":{\"name\":\"2020 IEEE International Conference on Robotics and Automation (ICRA)\",\"volume\":\"126 1\",\"pages\":\"4680-4686\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE International Conference on Robotics and Automation (ICRA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICRA40945.2020.9197280\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Conference on Robotics and Automation (ICRA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICRA40945.2020.9197280","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Analytic Combined IMU Integration (ACI2) For Visual Inertial Navigation
Batch optimization based inertial measurement unit (IMU) and visual sensor fusion enables high rate localization for many robotic tasks. However, it remains a challenge to ensure that the batch optimization is computationally efficient while being consistent for high rate IMU measurements without marginalization. In this paper, we derive inspiration from maximum likelihood estimation with partial-fixed estimates to provide a unified approach for handing both IMU preintegration and time-offset calibration. We present a modularized analytic combined IMU integrator (ACI2) with elegant derivations for IMU integrations, bias Jabcobians and related covariances. To simplify our derivation, we also prove that the right Jacobians for Hamilton quaterions and SO(3) are equivalent. Finally, we present a time offset calibrator that operates by fixing the linearization point for a given time offset. This reduces re-integration of the IMU measurements and thus improve efficiency. The proposed ACI2 and time-offset calibration is verified by intensive Monte-Carlo simulations generated from real world datasets. A proof-of-concept real world experiment is also conducted to verify the proposed ACI2 estimator.