用于视觉惯性导航的解析组合IMU积分(ACI2)

Yulin Yang, B. W. Babu, Chuchu Chen, G. Huang, Liu Ren
{"title":"用于视觉惯性导航的解析组合IMU积分(ACI2)","authors":"Yulin Yang, B. W. Babu, Chuchu Chen, G. Huang, Liu Ren","doi":"10.1109/ICRA40945.2020.9197280","DOIUrl":null,"url":null,"abstract":"Batch optimization based inertial measurement unit (IMU) and visual sensor fusion enables high rate localization for many robotic tasks. However, it remains a challenge to ensure that the batch optimization is computationally efficient while being consistent for high rate IMU measurements without marginalization. In this paper, we derive inspiration from maximum likelihood estimation with partial-fixed estimates to provide a unified approach for handing both IMU preintegration and time-offset calibration. We present a modularized analytic combined IMU integrator (ACI2) with elegant derivations for IMU integrations, bias Jabcobians and related covariances. To simplify our derivation, we also prove that the right Jacobians for Hamilton quaterions and SO(3) are equivalent. Finally, we present a time offset calibrator that operates by fixing the linearization point for a given time offset. This reduces re-integration of the IMU measurements and thus improve efficiency. The proposed ACI2 and time-offset calibration is verified by intensive Monte-Carlo simulations generated from real world datasets. A proof-of-concept real world experiment is also conducted to verify the proposed ACI2 estimator.","PeriodicalId":6859,"journal":{"name":"2020 IEEE International Conference on Robotics and Automation (ICRA)","volume":"126 1","pages":"4680-4686"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Analytic Combined IMU Integration (ACI2) For Visual Inertial Navigation\",\"authors\":\"Yulin Yang, B. W. Babu, Chuchu Chen, G. Huang, Liu Ren\",\"doi\":\"10.1109/ICRA40945.2020.9197280\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Batch optimization based inertial measurement unit (IMU) and visual sensor fusion enables high rate localization for many robotic tasks. However, it remains a challenge to ensure that the batch optimization is computationally efficient while being consistent for high rate IMU measurements without marginalization. In this paper, we derive inspiration from maximum likelihood estimation with partial-fixed estimates to provide a unified approach for handing both IMU preintegration and time-offset calibration. We present a modularized analytic combined IMU integrator (ACI2) with elegant derivations for IMU integrations, bias Jabcobians and related covariances. To simplify our derivation, we also prove that the right Jacobians for Hamilton quaterions and SO(3) are equivalent. Finally, we present a time offset calibrator that operates by fixing the linearization point for a given time offset. This reduces re-integration of the IMU measurements and thus improve efficiency. The proposed ACI2 and time-offset calibration is verified by intensive Monte-Carlo simulations generated from real world datasets. A proof-of-concept real world experiment is also conducted to verify the proposed ACI2 estimator.\",\"PeriodicalId\":6859,\"journal\":{\"name\":\"2020 IEEE International Conference on Robotics and Automation (ICRA)\",\"volume\":\"126 1\",\"pages\":\"4680-4686\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE International Conference on Robotics and Automation (ICRA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICRA40945.2020.9197280\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Conference on Robotics and Automation (ICRA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICRA40945.2020.9197280","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

基于批量优化的惯性测量单元(IMU)和视觉传感器融合为许多机器人任务实现了高速率定位。然而,如何确保批处理优化在计算效率高的同时,与高速率IMU测量保持一致而不边缘化,仍然是一个挑战。本文从部分固定估计的极大似然估计中得到启发,为IMU预积分和时间偏移校准提供了一种统一的方法。我们提出了一个模块化的解析组合IMU积分器(ACI2),并给出了IMU积分、偏雅可比矩阵和相关协方差的优美推导。为了简化我们的推导,我们也证明了Hamilton四元数和SO(3)的右雅可比矩阵是等价的。最后,我们提出了一个时间偏移校准器,它通过固定给定时间偏移的线性化点来运行。这减少了IMU测量的重新整合,从而提高了效率。通过对真实世界数据集进行蒙特卡罗模拟,验证了所提出的ac2和时间偏移校准方法。还进行了一个概念验证的现实世界实验来验证所提出的ACI2估计器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Analytic Combined IMU Integration (ACI2) For Visual Inertial Navigation
Batch optimization based inertial measurement unit (IMU) and visual sensor fusion enables high rate localization for many robotic tasks. However, it remains a challenge to ensure that the batch optimization is computationally efficient while being consistent for high rate IMU measurements without marginalization. In this paper, we derive inspiration from maximum likelihood estimation with partial-fixed estimates to provide a unified approach for handing both IMU preintegration and time-offset calibration. We present a modularized analytic combined IMU integrator (ACI2) with elegant derivations for IMU integrations, bias Jabcobians and related covariances. To simplify our derivation, we also prove that the right Jacobians for Hamilton quaterions and SO(3) are equivalent. Finally, we present a time offset calibrator that operates by fixing the linearization point for a given time offset. This reduces re-integration of the IMU measurements and thus improve efficiency. The proposed ACI2 and time-offset calibration is verified by intensive Monte-Carlo simulations generated from real world datasets. A proof-of-concept real world experiment is also conducted to verify the proposed ACI2 estimator.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Abstractions for computing all robotic sensors that suffice to solve a planning problem An Adaptive Supervisory Control Approach to Dynamic Locomotion Under Parametric Uncertainty Interval Search Genetic Algorithm Based on Trajectory to Solve Inverse Kinematics of Redundant Manipulators and Its Application Path-Following Model Predictive Control of Ballbots Identification and evaluation of a force model for multirotor UAVs*
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1