基于Transformer的新闻文章图像标题生成

Ashtavinayak Pande, Atul Pandey, Ayush Solanki, Chinmay Shanbhag, Manish Motghare
{"title":"基于Transformer的新闻文章图像标题生成","authors":"Ashtavinayak Pande, Atul Pandey, Ayush Solanki, Chinmay Shanbhag, Manish Motghare","doi":"10.47164/ijngc.v14i1.1033","DOIUrl":null,"url":null,"abstract":"We address the task of news-image captioning, which generates a description of an image given the image and its article body as input. The motive is to automatically generate captions for news images which if needed can then be used as reference captions for manually creating news image captions This task is more challenging than conventional image captioning because it requires a joint understanding of image and text. We present an N-Gram model that integrates text and image modalities and attends to textual features from visual features in generating a caption. Experiments based on automatic evaluation metrics and human evaluation show that an article text provides primary information to reproduce news-image captions written by journalists. The results also demonstrate that the proposed model outperforms the state-of-the-art model. In addition, we also confirm that visual features contribute to improving the quality of news-image captions. Also, we present a website that takes an image and its associated article as input and generates a one-liner caption for the same.","PeriodicalId":42021,"journal":{"name":"International Journal of Next-Generation Computing","volume":"37 1","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2023-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Transformer based image caption generation for news articles ·\",\"authors\":\"Ashtavinayak Pande, Atul Pandey, Ayush Solanki, Chinmay Shanbhag, Manish Motghare\",\"doi\":\"10.47164/ijngc.v14i1.1033\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We address the task of news-image captioning, which generates a description of an image given the image and its article body as input. The motive is to automatically generate captions for news images which if needed can then be used as reference captions for manually creating news image captions This task is more challenging than conventional image captioning because it requires a joint understanding of image and text. We present an N-Gram model that integrates text and image modalities and attends to textual features from visual features in generating a caption. Experiments based on automatic evaluation metrics and human evaluation show that an article text provides primary information to reproduce news-image captions written by journalists. The results also demonstrate that the proposed model outperforms the state-of-the-art model. In addition, we also confirm that visual features contribute to improving the quality of news-image captions. Also, we present a website that takes an image and its associated article as input and generates a one-liner caption for the same.\",\"PeriodicalId\":42021,\"journal\":{\"name\":\"International Journal of Next-Generation Computing\",\"volume\":\"37 1\",\"pages\":\"\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2023-02-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Next-Generation Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.47164/ijngc.v14i1.1033\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Next-Generation Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.47164/ijngc.v14i1.1033","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们解决了新闻图像标题的任务,该任务生成给定图像及其文章主体作为输入的图像的描述。动机是自动生成新闻图像的标题,如果需要的话,这些标题可以用作手动创建新闻图像标题的参考标题。这项任务比传统的图像标题更具挑战性,因为它需要对图像和文本的联合理解。我们提出了一个N-Gram模型,该模型集成了文本和图像模式,并在生成标题时关注视觉特征中的文本特征。基于自动评价指标和人工评价的实验表明,文章文本为再现记者撰写的新闻图片标题提供了主要信息。结果还表明,所提出的模型优于最先进的模型。此外,我们还证实了视觉特征有助于提高新闻图像字幕的质量。此外,我们还提供了一个网站,该网站将图像及其相关文章作为输入,并为其生成一行标题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Transformer based image caption generation for news articles ·
We address the task of news-image captioning, which generates a description of an image given the image and its article body as input. The motive is to automatically generate captions for news images which if needed can then be used as reference captions for manually creating news image captions This task is more challenging than conventional image captioning because it requires a joint understanding of image and text. We present an N-Gram model that integrates text and image modalities and attends to textual features from visual features in generating a caption. Experiments based on automatic evaluation metrics and human evaluation show that an article text provides primary information to reproduce news-image captions written by journalists. The results also demonstrate that the proposed model outperforms the state-of-the-art model. In addition, we also confirm that visual features contribute to improving the quality of news-image captions. Also, we present a website that takes an image and its associated article as input and generates a one-liner caption for the same.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Next-Generation Computing
International Journal of Next-Generation Computing COMPUTER SCIENCE, THEORY & METHODS-
自引率
66.70%
发文量
60
期刊最新文献
Integrating Smartphone Sensor Technology to Enhance Fine Motor and Working Memory Skills in Pediatric Obesity: A Gamified Approach Deep Learning based Semantic Segmentation for Buildings Detection from Remote Sensing Images Machine Learning-assisted Distance Based Residual Energy Aware Clustering Algorithm for Energy Efficient Information Dissemination in Urban VANETs High Utility Itemset Extraction using PSO with Online Control Parameter Calibration Alzheimer’s Disease Classification using Feature Enhanced Deep Convolutional Neural Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1