R. Spieringhs, Kevin A. G. Smet, I. Heynderickx, P. Hanselaer
{"title":"重新审视道路标线对比度阈值","authors":"R. Spieringhs, Kevin A. G. Smet, I. Heynderickx, P. Hanselaer","doi":"10.1080/15502724.2021.1993893","DOIUrl":null,"url":null,"abstract":"ABSTRACT Sufficient contrast between road surface and road markings is key for a safe and comfortable driving experience. This calls for a comprehensive and well established contrast (threshold) model, which ideally results in a single contrast threshold value independent of object angular size or road luminance. The contrast threshold model introduced by Adrian is still commonly used in road lighting. More recently, new contrast metrics that also predict supra-threshold contrast visibility have been proposed, but the corresponding visibility thresholds are not yet known. In the present study, participants are presented a rendering of a highway, including road marking arrows of various size and luminance and were asked to indicate the direction of the arrow. The luminance of the road surface, acting as background for the markings, was varied too. Due to the very low luminance values and the very small differences in luminance, measurement accuracy and calibration issues require special attention. The results show good agreement with Adrian’s visibility model (R2 = 0.75) in terms of luminance contrast, background luminance and size. In addition, we used our experimental data to define contrast thresholds for several other existing image based contrast models. Unfortunately, it seems to be impossible to state one unique threshold contrast value independent of object angular size and road luminance.","PeriodicalId":49911,"journal":{"name":"Leukos","volume":"35 1","pages":"493 - 512"},"PeriodicalIF":2.6000,"publicationDate":"2021-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Road Marking Contrast Threshold Revisited\",\"authors\":\"R. Spieringhs, Kevin A. G. Smet, I. Heynderickx, P. Hanselaer\",\"doi\":\"10.1080/15502724.2021.1993893\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT Sufficient contrast between road surface and road markings is key for a safe and comfortable driving experience. This calls for a comprehensive and well established contrast (threshold) model, which ideally results in a single contrast threshold value independent of object angular size or road luminance. The contrast threshold model introduced by Adrian is still commonly used in road lighting. More recently, new contrast metrics that also predict supra-threshold contrast visibility have been proposed, but the corresponding visibility thresholds are not yet known. In the present study, participants are presented a rendering of a highway, including road marking arrows of various size and luminance and were asked to indicate the direction of the arrow. The luminance of the road surface, acting as background for the markings, was varied too. Due to the very low luminance values and the very small differences in luminance, measurement accuracy and calibration issues require special attention. The results show good agreement with Adrian’s visibility model (R2 = 0.75) in terms of luminance contrast, background luminance and size. In addition, we used our experimental data to define contrast thresholds for several other existing image based contrast models. Unfortunately, it seems to be impossible to state one unique threshold contrast value independent of object angular size and road luminance.\",\"PeriodicalId\":49911,\"journal\":{\"name\":\"Leukos\",\"volume\":\"35 1\",\"pages\":\"493 - 512\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2021-12-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Leukos\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/15502724.2021.1993893\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Leukos","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/15502724.2021.1993893","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
ABSTRACT Sufficient contrast between road surface and road markings is key for a safe and comfortable driving experience. This calls for a comprehensive and well established contrast (threshold) model, which ideally results in a single contrast threshold value independent of object angular size or road luminance. The contrast threshold model introduced by Adrian is still commonly used in road lighting. More recently, new contrast metrics that also predict supra-threshold contrast visibility have been proposed, but the corresponding visibility thresholds are not yet known. In the present study, participants are presented a rendering of a highway, including road marking arrows of various size and luminance and were asked to indicate the direction of the arrow. The luminance of the road surface, acting as background for the markings, was varied too. Due to the very low luminance values and the very small differences in luminance, measurement accuracy and calibration issues require special attention. The results show good agreement with Adrian’s visibility model (R2 = 0.75) in terms of luminance contrast, background luminance and size. In addition, we used our experimental data to define contrast thresholds for several other existing image based contrast models. Unfortunately, it seems to be impossible to state one unique threshold contrast value independent of object angular size and road luminance.
期刊介绍:
The Illuminating Engineering Society of North America and our publisher Taylor & Francis make every effort to ensure the accuracy of all the information (the "Content") contained in our publications. However, The Illuminating Engineering Society of North America and our publisher Taylor & Francis, our agents, and our licensors make no representations or warranties whatsoever as to the accuracy, completeness, or suitability for any purpose of the Content. Any opinions and views expressed in this publication are the opinions and views of the authors, and are not the views of or endorsed by The Illuminating Engineering Society of North America and our publisher Taylor & Francis. The accuracy of the Content should not be relied upon and should be independently verified with primary sources of information. The Illuminating Engineering Society of North America and our publisher Taylor & Francis shall not be liable for any losses, actions, claims, proceedings, demands, costs, expenses, damages, and other liabilities whatsoever or howsoever caused arising directly or indirectly in connection with, in relation to, or arising out of the use of the Content. Terms & Conditions of access and use can be found at http://www.tandfonline.com/page/terms-and-conditions .