植物中的脂滴-过氧化物酶体连接

Contact Pub Date : 2020-02-01 DOI:10.1177/2515256420908765
Nicolas Esnay, J. Dyer, R. Mullen, K. Chapman
{"title":"植物中的脂滴-过氧化物酶体连接","authors":"Nicolas Esnay, J. Dyer, R. Mullen, K. Chapman","doi":"10.1177/2515256420908765","DOIUrl":null,"url":null,"abstract":"Lipid droplets (LDs) are the principal subcellular sites for the storage of triacylglycerols (TAGs), and in plants, TAG degradation requires metabolism in peroxisomes. This metabolic cooperation includes TAG hydrolysis by the sugar-dependent 1 lipase located on the LD surface and the transfer of fatty acids into the peroxisome matrix by the peroxisomal membrane ATP-binding cassette transporter, PXA1. During seed germination, this process fuels heterotrophic growth and involves the retromer-dependent formation of peroxisomal membrane extensions called peroxules that interact with LDs. Similar changes in membrane architecture are also observed during interactions of peroxisomes and LDs in yeast and mammalian cells, despite differences in the molecular components required for their connections. Proteins directly involved in LD–peroxisome membrane contact site formation in plants have not yet been identified, but the connection between these two organelles is dependent upon PXA1, which contains a cytoplasmic exposed FFAT (two phenylalanines in an acidic tract)-like motif capable of interacting with vesicle-associated membrane protein-associated proteins (VAPs). Indeed, the identification of several VAPs in plant LD proteomes supports the premise that a VAP-PXA1 connection might be part of a functional tethering complex that connects these two organelles, although other types of interactions are also possible. Overall, such connections between peroxisomes and LDs would allow for efficient transfer of lipophilic substrates from LDs to the peroxisome matrix in plant cells, similar to how VAPs participate in lipid transfer reactions between other subcellular compartments in eukaryotic systems.","PeriodicalId":87951,"journal":{"name":"Contact","volume":"27 1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Lipid Droplet–Peroxisome Connections in Plants\",\"authors\":\"Nicolas Esnay, J. Dyer, R. Mullen, K. Chapman\",\"doi\":\"10.1177/2515256420908765\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Lipid droplets (LDs) are the principal subcellular sites for the storage of triacylglycerols (TAGs), and in plants, TAG degradation requires metabolism in peroxisomes. This metabolic cooperation includes TAG hydrolysis by the sugar-dependent 1 lipase located on the LD surface and the transfer of fatty acids into the peroxisome matrix by the peroxisomal membrane ATP-binding cassette transporter, PXA1. During seed germination, this process fuels heterotrophic growth and involves the retromer-dependent formation of peroxisomal membrane extensions called peroxules that interact with LDs. Similar changes in membrane architecture are also observed during interactions of peroxisomes and LDs in yeast and mammalian cells, despite differences in the molecular components required for their connections. Proteins directly involved in LD–peroxisome membrane contact site formation in plants have not yet been identified, but the connection between these two organelles is dependent upon PXA1, which contains a cytoplasmic exposed FFAT (two phenylalanines in an acidic tract)-like motif capable of interacting with vesicle-associated membrane protein-associated proteins (VAPs). Indeed, the identification of several VAPs in plant LD proteomes supports the premise that a VAP-PXA1 connection might be part of a functional tethering complex that connects these two organelles, although other types of interactions are also possible. Overall, such connections between peroxisomes and LDs would allow for efficient transfer of lipophilic substrates from LDs to the peroxisome matrix in plant cells, similar to how VAPs participate in lipid transfer reactions between other subcellular compartments in eukaryotic systems.\",\"PeriodicalId\":87951,\"journal\":{\"name\":\"Contact\",\"volume\":\"27 1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Contact\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/2515256420908765\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Contact","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/2515256420908765","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

脂滴(ld)是储存三酰基甘油(TAG)的主要亚细胞位点,在植物中,TAG的降解需要过氧化物酶体的代谢。这种代谢合作包括位于LD表面的糖依赖性1脂肪酶对TAG的水解,以及脂肪酸通过过氧化物酶体膜atp结合盒转运体PXA1将脂肪酸转移到过氧化物酶体基质中。在种子萌发过程中,这一过程促进了异养生长,并涉及与LDs相互作用的过氧化物酶体膜延伸(称为过氧化物)的反转录依赖形成。在酵母和哺乳动物细胞中,过氧化物酶体和lld相互作用时也观察到类似的膜结构变化,尽管它们连接所需的分子成分不同。植物中直接参与ld -过氧化物酶体膜接触位点形成的蛋白尚未被确定,但这两个细胞器之间的连接依赖于PXA1, PXA1含有细胞质暴露的FFAT(酸性通道中的两个苯丙氨酸)样基序,能够与囊泡相关膜蛋白相关蛋白(VAPs)相互作用。事实上,植物LD蛋白质组中几种vap的鉴定支持了一个前提,即VAP-PXA1连接可能是连接这两个细胞器的功能性捆绑复合体的一部分,尽管其他类型的相互作用也可能存在。总的来说,过氧化物酶体和过氧化物酶体之间的这种连接将允许植物细胞中亲脂性底物从过氧化物酶体到过氧化物酶体基质的有效转移,类似于VAPs参与真核系统中其他亚细胞间的脂质转移反应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Lipid Droplet–Peroxisome Connections in Plants
Lipid droplets (LDs) are the principal subcellular sites for the storage of triacylglycerols (TAGs), and in plants, TAG degradation requires metabolism in peroxisomes. This metabolic cooperation includes TAG hydrolysis by the sugar-dependent 1 lipase located on the LD surface and the transfer of fatty acids into the peroxisome matrix by the peroxisomal membrane ATP-binding cassette transporter, PXA1. During seed germination, this process fuels heterotrophic growth and involves the retromer-dependent formation of peroxisomal membrane extensions called peroxules that interact with LDs. Similar changes in membrane architecture are also observed during interactions of peroxisomes and LDs in yeast and mammalian cells, despite differences in the molecular components required for their connections. Proteins directly involved in LD–peroxisome membrane contact site formation in plants have not yet been identified, but the connection between these two organelles is dependent upon PXA1, which contains a cytoplasmic exposed FFAT (two phenylalanines in an acidic tract)-like motif capable of interacting with vesicle-associated membrane protein-associated proteins (VAPs). Indeed, the identification of several VAPs in plant LD proteomes supports the premise that a VAP-PXA1 connection might be part of a functional tethering complex that connects these two organelles, although other types of interactions are also possible. Overall, such connections between peroxisomes and LDs would allow for efficient transfer of lipophilic substrates from LDs to the peroxisome matrix in plant cells, similar to how VAPs participate in lipid transfer reactions between other subcellular compartments in eukaryotic systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
LAMinar Flow: Sterol Transport in a Pathogenic Yeast Protection of Membrane Contact Protein by the Methionine Sulfoxide Reductases Neuroacanthocytosis Syndromes: The Clinical Perspective A Possible Role of VPS13B in the Formation of Golgi-Lipid Droplet Contacts Associating with the ER A Role for Two-Pore Channel Type 2 (TPC2)-Mediated Regulation of Membrane Contact Sites During Zebrafish Notochord Biogenesis?
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1