基于AW3D30和SRTM的建筑高度数字模型分析建筑高度对地表温度的影响

Q3 Social Sciences Human Geographies Pub Date : 2022-09-22 DOI:10.3390/geographies2040034
D. Danniswari, T. Honjo, K. Furuya
{"title":"基于AW3D30和SRTM的建筑高度数字模型分析建筑高度对地表温度的影响","authors":"D. Danniswari, T. Honjo, K. Furuya","doi":"10.3390/geographies2040034","DOIUrl":null,"url":null,"abstract":"Land surface temperature (LST) is heavily influenced by urban morphology. Building height is an important parameter of urban morphology that affects LST. Existing studies show contradicting results where building height can have a positive or negative relationship with LST. More studies are necessary to examine the impact of building height. However, high accuracy building height data are difficult to obtain on a global scale and are not available in many places in the world. Using the Digital Building Height Model (DBHM) calculated by subtracting the SRTM from AW3D30, this study analyzes the relationship between building height and Landsat LST in two cities: Tokyo and Jakarta. The relationship is observed during both cities’ warm seasons (April to October) and Tokyo’s cool seasons (November to February). The results show that building height and LST are negatively correlated. In the morning, areas with high-rise buildings tend to have lower LST than areas with low-rise buildings. This phenomenon is revealed to be stronger during the warm season. The LST difference between low-rise and mixed-height building areas is more significant than between mixed-height and high-rise building areas.","PeriodicalId":38507,"journal":{"name":"Human Geographies","volume":"59 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Analysis of Building Height Impact on Land Surface Temperature by Digital Building Height Model Obtained from AW3D30 and SRTM\",\"authors\":\"D. Danniswari, T. Honjo, K. Furuya\",\"doi\":\"10.3390/geographies2040034\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Land surface temperature (LST) is heavily influenced by urban morphology. Building height is an important parameter of urban morphology that affects LST. Existing studies show contradicting results where building height can have a positive or negative relationship with LST. More studies are necessary to examine the impact of building height. However, high accuracy building height data are difficult to obtain on a global scale and are not available in many places in the world. Using the Digital Building Height Model (DBHM) calculated by subtracting the SRTM from AW3D30, this study analyzes the relationship between building height and Landsat LST in two cities: Tokyo and Jakarta. The relationship is observed during both cities’ warm seasons (April to October) and Tokyo’s cool seasons (November to February). The results show that building height and LST are negatively correlated. In the morning, areas with high-rise buildings tend to have lower LST than areas with low-rise buildings. This phenomenon is revealed to be stronger during the warm season. The LST difference between low-rise and mixed-height building areas is more significant than between mixed-height and high-rise building areas.\",\"PeriodicalId\":38507,\"journal\":{\"name\":\"Human Geographies\",\"volume\":\"59 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Human Geographies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/geographies2040034\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Social Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Human Geographies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/geographies2040034","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Social Sciences","Score":null,"Total":0}
引用次数: 2

摘要

地表温度受城市形态的影响较大。建筑高度是影响地表温度的重要城市形态参数。现有的研究表明,建筑高度与地表温度之间存在正相关或负相关的矛盾结果。需要更多的研究来检验建筑高度的影响。然而,在全球范围内很难获得高精度的建筑高度数据,在世界上许多地方都无法获得。利用AW3D30减去SRTM计算的数字建筑高度模型(DBHM),分析了东京和雅加达两个城市的建筑高度与Landsat LST的关系。这一关系在两个城市的温暖季节(4月至10月)和东京的凉爽季节(11月至2月)都可以观察到。结果表明,建筑高度与地表温度呈负相关。在上午,高层建筑区域的地表温度往往低于低层建筑区域。这一现象在暖季更为明显。低层和混合高层建筑区域的地表温度差异比混合高层建筑区域的地表温度差异更显著。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Analysis of Building Height Impact on Land Surface Temperature by Digital Building Height Model Obtained from AW3D30 and SRTM
Land surface temperature (LST) is heavily influenced by urban morphology. Building height is an important parameter of urban morphology that affects LST. Existing studies show contradicting results where building height can have a positive or negative relationship with LST. More studies are necessary to examine the impact of building height. However, high accuracy building height data are difficult to obtain on a global scale and are not available in many places in the world. Using the Digital Building Height Model (DBHM) calculated by subtracting the SRTM from AW3D30, this study analyzes the relationship between building height and Landsat LST in two cities: Tokyo and Jakarta. The relationship is observed during both cities’ warm seasons (April to October) and Tokyo’s cool seasons (November to February). The results show that building height and LST are negatively correlated. In the morning, areas with high-rise buildings tend to have lower LST than areas with low-rise buildings. This phenomenon is revealed to be stronger during the warm season. The LST difference between low-rise and mixed-height building areas is more significant than between mixed-height and high-rise building areas.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Human Geographies
Human Geographies Social Sciences-Geography, Planning and Development
CiteScore
1.10
自引率
0.00%
发文量
7
审稿时长
8 weeks
期刊最新文献
Residents and Stakeholder Opinions on Township Tourism in Langa, Cape Town, South Africa Spatio-Temporal Dynamics and Physico-Hydrological Trends in Rainfall, Runoff and Land Use in Paraíba Watershed Perspectives on Advanced Technologies in Spatial Data Collection and Analysis Contemporary Challenges in Destination Planning: A Geographical Typology Approach Spatiotemporal Dengue Fever Incidence Associated with Climate in a Brazilian Tropical Region
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1