用盐酸煅烧和浸出分离稀有金属精矿中的铈、钕、镧

Abdul Fattah Alfawwazi, Much. Setyadji, Jumaeri Jumaeri
{"title":"用盐酸煅烧和浸出分离稀有金属精矿中的铈、钕、镧","authors":"Abdul Fattah Alfawwazi, Much. Setyadji, Jumaeri Jumaeri","doi":"10.15294/ijcs.v11i1.53964","DOIUrl":null,"url":null,"abstract":"\n \n \n \nThe separation of Ce, La, and Nd elements from rare earth metal (REOH) concentrates from monazite sand processing needs to be done because the uses of La and Nd in the industry are very large. This research was conducted to determine the optimization of leaching in the separation of Ce, La, and Nd. The method used to separate the elements Ce, La, and Nd from the rare earth metal concentrate is through calcination at a temperature of 600°, 800°, 1000°C for 2 hours and without calcination, followed by a leaching process using 0.9 M HCl solvent at a temperature of 75°C. Variations made are the ratio of solid and liquid ratio and variations in time (5, 10, 15, 20, and 25 minutes), and the stirring speed is fixed at 150 rpm. From the results of FT-IR and XRD analysis, it is known that calcination can convert REOH concentrate into REO. Residual analysis of leaching results using XRF showed that the increase in calcination temperature with a solid and liquid ratio and leaching time could affect the leaching efficiency results. The highest leaching efficiency for the element La was obtained at a calcination temperature of 1000°C with a time of 10 minutes, which was 73.20%. Meanwhile, the optimum condition for the best leaching process for Nd is at a calcination temperature of 1000°C with a contact time of 5 minutes with a leaching efficiency of 49.68%. \n \n \n \n","PeriodicalId":13479,"journal":{"name":"Indonesian Journal of Chemical Science","volume":"15 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Separation of Cerium, Neodymium, and Lanthanum from Rare Metal Concentrates by Calcining and Leaching Using Hydrochloric Acid\",\"authors\":\"Abdul Fattah Alfawwazi, Much. Setyadji, Jumaeri Jumaeri\",\"doi\":\"10.15294/ijcs.v11i1.53964\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n \\n \\n \\nThe separation of Ce, La, and Nd elements from rare earth metal (REOH) concentrates from monazite sand processing needs to be done because the uses of La and Nd in the industry are very large. This research was conducted to determine the optimization of leaching in the separation of Ce, La, and Nd. The method used to separate the elements Ce, La, and Nd from the rare earth metal concentrate is through calcination at a temperature of 600°, 800°, 1000°C for 2 hours and without calcination, followed by a leaching process using 0.9 M HCl solvent at a temperature of 75°C. Variations made are the ratio of solid and liquid ratio and variations in time (5, 10, 15, 20, and 25 minutes), and the stirring speed is fixed at 150 rpm. From the results of FT-IR and XRD analysis, it is known that calcination can convert REOH concentrate into REO. Residual analysis of leaching results using XRF showed that the increase in calcination temperature with a solid and liquid ratio and leaching time could affect the leaching efficiency results. The highest leaching efficiency for the element La was obtained at a calcination temperature of 1000°C with a time of 10 minutes, which was 73.20%. Meanwhile, the optimum condition for the best leaching process for Nd is at a calcination temperature of 1000°C with a contact time of 5 minutes with a leaching efficiency of 49.68%. \\n \\n \\n \\n\",\"PeriodicalId\":13479,\"journal\":{\"name\":\"Indonesian Journal of Chemical Science\",\"volume\":\"15 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Indonesian Journal of Chemical Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15294/ijcs.v11i1.53964\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indonesian Journal of Chemical Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15294/ijcs.v11i1.53964","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

由于La和Nd在工业上的使用量很大,因此需要从单独居石砂加工的稀土金属(REOH)精矿中分离出Ce、La和Nd元素。本研究旨在确定分离铈、镧和钕的最佳浸出工艺。从稀土金属精矿中分离Ce、La、Nd元素的方法是在600°、800°、1000°C的温度下不煅烧2小时,然后在75°C的温度下用0.9 M的HCl溶剂浸出。所做的变化是固液比和时间(5、10、15、20和25分钟)的变化,搅拌速度固定为150转/分。FT-IR和XRD分析结果表明,煅烧可以将REOH精矿转化为REO。利用XRF对浸出结果进行残留分析表明,提高焙烧温度、固液比和浸出时间对浸出效果有影响。焙烧温度为1000℃,时间为10 min时,La元素的浸出率最高,为73.20%。同时,最佳浸出工艺条件为煅烧温度为1000℃,接触时间为5 min,浸出效率为49.68%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Separation of Cerium, Neodymium, and Lanthanum from Rare Metal Concentrates by Calcining and Leaching Using Hydrochloric Acid
The separation of Ce, La, and Nd elements from rare earth metal (REOH) concentrates from monazite sand processing needs to be done because the uses of La and Nd in the industry are very large. This research was conducted to determine the optimization of leaching in the separation of Ce, La, and Nd. The method used to separate the elements Ce, La, and Nd from the rare earth metal concentrate is through calcination at a temperature of 600°, 800°, 1000°C for 2 hours and without calcination, followed by a leaching process using 0.9 M HCl solvent at a temperature of 75°C. Variations made are the ratio of solid and liquid ratio and variations in time (5, 10, 15, 20, and 25 minutes), and the stirring speed is fixed at 150 rpm. From the results of FT-IR and XRD analysis, it is known that calcination can convert REOH concentrate into REO. Residual analysis of leaching results using XRF showed that the increase in calcination temperature with a solid and liquid ratio and leaching time could affect the leaching efficiency results. The highest leaching efficiency for the element La was obtained at a calcination temperature of 1000°C with a time of 10 minutes, which was 73.20%. Meanwhile, the optimum condition for the best leaching process for Nd is at a calcination temperature of 1000°C with a contact time of 5 minutes with a leaching efficiency of 49.68%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Characterization and Kinetic Study of Methylene Blue Photocatalytic on ZnO/ZSM-5 Antioxidant Activity, Cytotoxicity, and Identification of Secondary Metabolites of Kigelia africana from Waterpark Platinum Riau Phytochemical Tests and Antioxidant Activities of the Rhips Ginger (Zingiber Officinale Var Amarum.) Synthesis, Evaluation, and Molecular Docking Study of 4-Monoacyl Resorcinol Against Tyrosinase Enzyme Application of Rice Field Snails (Pila ampullacea) Extract as an Alternative Substitute for Protein Sources in Export-Quality Catfish Feed (Clarias sp.)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1