晶格相容性理论:记录的I-III-O2三元氧化物陶瓷在低温下与碲化三元和硫化物三元陶瓷不稳定性的争论

IF 18.6 1区 材料科学 Q1 MATERIALS SCIENCE, CERAMICS Journal of Advanced Ceramics Pub Date : 2013-01-02 DOI:10.1155/2013/734015
K. Boubaker
{"title":"晶格相容性理论:记录的I-III-O2三元氧化物陶瓷在低温下与碲化三元和硫化物三元陶瓷不稳定性的争论","authors":"K. Boubaker","doi":"10.1155/2013/734015","DOIUrl":null,"url":null,"abstract":"Some recorded behaviours differences between chalcopyrite ternary oxide ceramics and telluride and sulphides are investigated in the framework of the recently proposed Lattice Compatibility Theory (LCT). Alterations have been evaluated in terms of Urbach tailing and atomic valence shell electrons orbital eigenvalues, which were calculated through several approximations. The aim of the study was mainly an attempt to explain the intriguing problem of difficulties of elaborating chalcopyrite ternary oxide ceramics (I-III-O2) at relatively low temperatures under conditions which allowed crystallization of ternary telluride and sulphides.","PeriodicalId":14862,"journal":{"name":"Journal of Advanced Ceramics","volume":"61 1","pages":"1-6"},"PeriodicalIF":18.6000,"publicationDate":"2013-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"The Lattice Compatibility Theory: Arguments for Recorded I-III-O2 Ternary Oxide Ceramics Instability at Low Temperatures beside Ternary Telluride and Sulphide Ceramics\",\"authors\":\"K. Boubaker\",\"doi\":\"10.1155/2013/734015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Some recorded behaviours differences between chalcopyrite ternary oxide ceramics and telluride and sulphides are investigated in the framework of the recently proposed Lattice Compatibility Theory (LCT). Alterations have been evaluated in terms of Urbach tailing and atomic valence shell electrons orbital eigenvalues, which were calculated through several approximations. The aim of the study was mainly an attempt to explain the intriguing problem of difficulties of elaborating chalcopyrite ternary oxide ceramics (I-III-O2) at relatively low temperatures under conditions which allowed crystallization of ternary telluride and sulphides.\",\"PeriodicalId\":14862,\"journal\":{\"name\":\"Journal of Advanced Ceramics\",\"volume\":\"61 1\",\"pages\":\"1-6\"},\"PeriodicalIF\":18.6000,\"publicationDate\":\"2013-01-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Advanced Ceramics\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1155/2013/734015\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, CERAMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Advanced Ceramics","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1155/2013/734015","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
引用次数: 15

摘要

在最近提出的晶格相容理论(LCT)框架下,研究了黄铜矿三元氧化陶瓷与碲化物和硫化物之间的一些记录行为差异。用乌尔巴赫尾波和原子价壳层电子轨道特征值对变化进行了评价,这些特征值是通过几种近似计算得到的。该研究的目的主要是试图解释在允许三元碲化物和硫化物结晶的条件下,在相对较低的温度下制备黄铜矿三元氧化陶瓷(I-III-O2)的困难问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The Lattice Compatibility Theory: Arguments for Recorded I-III-O2 Ternary Oxide Ceramics Instability at Low Temperatures beside Ternary Telluride and Sulphide Ceramics
Some recorded behaviours differences between chalcopyrite ternary oxide ceramics and telluride and sulphides are investigated in the framework of the recently proposed Lattice Compatibility Theory (LCT). Alterations have been evaluated in terms of Urbach tailing and atomic valence shell electrons orbital eigenvalues, which were calculated through several approximations. The aim of the study was mainly an attempt to explain the intriguing problem of difficulties of elaborating chalcopyrite ternary oxide ceramics (I-III-O2) at relatively low temperatures under conditions which allowed crystallization of ternary telluride and sulphides.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Advanced Ceramics
Journal of Advanced Ceramics MATERIALS SCIENCE, CERAMICS-
CiteScore
21.00
自引率
10.70%
发文量
290
审稿时长
14 days
期刊介绍: Journal of Advanced Ceramics is a single-blind peer-reviewed, open access international journal published on behalf of the State Key Laboratory of New Ceramics and Fine Processing (Tsinghua University, China) and the Advanced Ceramics Division of the Chinese Ceramic Society. Journal of Advanced Ceramics provides a forum for publishing original research papers, rapid communications, and commissioned reviews relating to advanced ceramic materials in the forms of particulates, dense or porous bodies, thin/thick films or coatings and laminated, graded and composite structures.
期刊最新文献
Preparation and properties of Ti 3SiC 2-based corrosion mitigation coatings for SiC f/SiC PWR accident tolerant fuel cladding Toughened (Ti 0.2Zr 0.2Hf 0.2Nb 0.2Ta 0.2)B 2–SiC composites fabricated by one-step reactive sintering with a unique SiB 6 additive Sn-doped cobalt containing perovskite as the air electrode for highly active and durable reversible protonic ceramic electrochemical cells Composite structure Al 2O 3/Al 2O 3–YAG:Ce/YAG ceramics with high color spatial uniformity for white laser lighting Influence of nano-mechanical evolution of Ti 3AlC 2 ceramic on the arc erosion resistance of Ag-based composite electrical contact material
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1