{"title":"基于最优平衡熵采样的不平衡问题零初始化无监督主动学习","authors":"G. Szücs, Dávid Papp","doi":"10.1080/0952813X.2021.1924871","DOIUrl":null,"url":null,"abstract":"ABSTRACT Given the challenge of gathering labelled training data for machine learning tasks, active learning has become popular. This paper focuses on the beginning of unsupervised active learning, where there are no labelled data at all. The aim of this zero initialised unsupervised active learning is to select the most informative examples – even from an imbalanced dataset – to be labelled manually. Our solution with proposed selection strategy, called Optimally Balanced Entropy-Based Sampling (OBEBS) reaches a balanced training set at each step to avoid imbalanced problems. Two theorems of the optimal solution for selection strategy are also presented and proved in the paper. At the beginning of the active learning, there is not enough information for supervised machine learning method, thus our selection strategy is based on unsupervised learning (clustering). The cluster membership likelihoods of the items are essential for the algorithm to connect the clusters and the classes, i.e., to find assignment between them. For the best assignment, the Hungarian algorithm is used, and single, multi, and adaptive assignment variants of OBEBS method are developed. Based on generated and real images datasets of handwritten digits, the experimental results show that our method surpasses the state-of-the-art methods.","PeriodicalId":15677,"journal":{"name":"Journal of Experimental & Theoretical Artificial Intelligence","volume":"13 1","pages":"781 - 814"},"PeriodicalIF":1.7000,"publicationDate":"2021-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Zero Initialised Unsupervised Active Learning by Optimally Balanced Entropy-Based Sampling for Imbalanced Problems\",\"authors\":\"G. Szücs, Dávid Papp\",\"doi\":\"10.1080/0952813X.2021.1924871\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT Given the challenge of gathering labelled training data for machine learning tasks, active learning has become popular. This paper focuses on the beginning of unsupervised active learning, where there are no labelled data at all. The aim of this zero initialised unsupervised active learning is to select the most informative examples – even from an imbalanced dataset – to be labelled manually. Our solution with proposed selection strategy, called Optimally Balanced Entropy-Based Sampling (OBEBS) reaches a balanced training set at each step to avoid imbalanced problems. Two theorems of the optimal solution for selection strategy are also presented and proved in the paper. At the beginning of the active learning, there is not enough information for supervised machine learning method, thus our selection strategy is based on unsupervised learning (clustering). The cluster membership likelihoods of the items are essential for the algorithm to connect the clusters and the classes, i.e., to find assignment between them. For the best assignment, the Hungarian algorithm is used, and single, multi, and adaptive assignment variants of OBEBS method are developed. Based on generated and real images datasets of handwritten digits, the experimental results show that our method surpasses the state-of-the-art methods.\",\"PeriodicalId\":15677,\"journal\":{\"name\":\"Journal of Experimental & Theoretical Artificial Intelligence\",\"volume\":\"13 1\",\"pages\":\"781 - 814\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2021-05-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Experimental & Theoretical Artificial Intelligence\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1080/0952813X.2021.1924871\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Experimental & Theoretical Artificial Intelligence","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1080/0952813X.2021.1924871","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Zero Initialised Unsupervised Active Learning by Optimally Balanced Entropy-Based Sampling for Imbalanced Problems
ABSTRACT Given the challenge of gathering labelled training data for machine learning tasks, active learning has become popular. This paper focuses on the beginning of unsupervised active learning, where there are no labelled data at all. The aim of this zero initialised unsupervised active learning is to select the most informative examples – even from an imbalanced dataset – to be labelled manually. Our solution with proposed selection strategy, called Optimally Balanced Entropy-Based Sampling (OBEBS) reaches a balanced training set at each step to avoid imbalanced problems. Two theorems of the optimal solution for selection strategy are also presented and proved in the paper. At the beginning of the active learning, there is not enough information for supervised machine learning method, thus our selection strategy is based on unsupervised learning (clustering). The cluster membership likelihoods of the items are essential for the algorithm to connect the clusters and the classes, i.e., to find assignment between them. For the best assignment, the Hungarian algorithm is used, and single, multi, and adaptive assignment variants of OBEBS method are developed. Based on generated and real images datasets of handwritten digits, the experimental results show that our method surpasses the state-of-the-art methods.
期刊介绍:
Journal of Experimental & Theoretical Artificial Intelligence (JETAI) is a world leading journal dedicated to publishing high quality, rigorously reviewed, original papers in artificial intelligence (AI) research.
The journal features work in all subfields of AI research and accepts both theoretical and applied research. Topics covered include, but are not limited to, the following:
• cognitive science
• games
• learning
• knowledge representation
• memory and neural system modelling
• perception
• problem-solving