基于二进小波的心电信号处理及其心理压力评估

G. Ranganathan, V. Bindhu, R. Rangarajan
{"title":"基于二进小波的心电信号处理及其心理压力评估","authors":"G. Ranganathan, V. Bindhu, R. Rangarajan","doi":"10.1109/ICBBE.2010.5516360","DOIUrl":null,"url":null,"abstract":"This paper presents the evaluation of mental stress assessment using heart rate variability. The heart rate signals are processed first using Fourier transform, then it is applied to wavelet transform. The activity of the autonomic nervous system is noninvasively studied by means of autoregressive (AR) frequency analysis of the heart-rate variability (HRV) signal. Spectral decomposition of the Heart Rate Variability during whole night recordings was obtained, in order to assess the characteristic fluctuations in the heart rate. This paper presents a novel method of HRV analysis for mental stress assessment using fuzzy clustering and robust identification techniques. The approach consists of 1)online monitoring of heart rate signals, 2) signal processing using the Dyadic wavelet.","PeriodicalId":6396,"journal":{"name":"2010 4th International Conference on Bioinformatics and Biomedical Engineering","volume":"78 1","pages":"1-4"},"PeriodicalIF":0.0000,"publicationDate":"2010-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"ECG Signal Processing Using Dyadic Wavelet for Mental Stress Assessment\",\"authors\":\"G. Ranganathan, V. Bindhu, R. Rangarajan\",\"doi\":\"10.1109/ICBBE.2010.5516360\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents the evaluation of mental stress assessment using heart rate variability. The heart rate signals are processed first using Fourier transform, then it is applied to wavelet transform. The activity of the autonomic nervous system is noninvasively studied by means of autoregressive (AR) frequency analysis of the heart-rate variability (HRV) signal. Spectral decomposition of the Heart Rate Variability during whole night recordings was obtained, in order to assess the characteristic fluctuations in the heart rate. This paper presents a novel method of HRV analysis for mental stress assessment using fuzzy clustering and robust identification techniques. The approach consists of 1)online monitoring of heart rate signals, 2) signal processing using the Dyadic wavelet.\",\"PeriodicalId\":6396,\"journal\":{\"name\":\"2010 4th International Conference on Bioinformatics and Biomedical Engineering\",\"volume\":\"78 1\",\"pages\":\"1-4\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-06-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 4th International Conference on Bioinformatics and Biomedical Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICBBE.2010.5516360\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 4th International Conference on Bioinformatics and Biomedical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICBBE.2010.5516360","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

本文介绍了利用心率变异性评估精神压力的方法。首先对心率信号进行傅里叶变换,然后将其应用于小波变换。自主神经系统的活动是通过自回归(AR)频率分析心率变异性(HRV)信号的无创研究。为了评估心率的特征波动,对整个夜间记录的心率变异性进行了频谱分解。本文提出了一种基于模糊聚类和鲁棒识别技术的精神压力评估HRV分析新方法。该方法包括1)在线监测心率信号,2)用二进小波对信号进行处理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
ECG Signal Processing Using Dyadic Wavelet for Mental Stress Assessment
This paper presents the evaluation of mental stress assessment using heart rate variability. The heart rate signals are processed first using Fourier transform, then it is applied to wavelet transform. The activity of the autonomic nervous system is noninvasively studied by means of autoregressive (AR) frequency analysis of the heart-rate variability (HRV) signal. Spectral decomposition of the Heart Rate Variability during whole night recordings was obtained, in order to assess the characteristic fluctuations in the heart rate. This paper presents a novel method of HRV analysis for mental stress assessment using fuzzy clustering and robust identification techniques. The approach consists of 1)online monitoring of heart rate signals, 2) signal processing using the Dyadic wavelet.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Characterization of Codon Usage Bias in the Newly Identified DEV UL53 Gene Indoor Air Quality Assessment in an Art Gallery with an HVAC System Multi-Method Measurement on Mercury Concentration in Plants Optimization of Nutrition Condition for Biodegradation of Diesel Oil Using Response Surface Methodology Application of SWAT in Non-Point Source Pollution of Upper Xiliaohe Basin, China
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1