InShaDe:用于组织学二维细胞和核形状视觉分析的不变形状描述符

Marco Agus, Khaled A. Althelaya, C. Calì, M. Boido, Yin Yang, G. Pintore, E. Gobbetti, J. Schneider
{"title":"InShaDe:用于组织学二维细胞和核形状视觉分析的不变形状描述符","authors":"Marco Agus, Khaled A. Althelaya, C. Calì, M. Boido, Yin Yang, G. Pintore, E. Gobbetti, J. Schneider","doi":"10.2312/vcbm.20201173","DOIUrl":null,"url":null,"abstract":"We present a shape processing framework for visual exploration of cellular nuclear envelopes extracted from histology images. The framework is based on a novel shape descriptor of closed contours relying on a geodesically uniform resampling of discrete curves to allow for discrete differential-geometry-based computation of unsigned curvature at vertices and edges. Our descriptor is, by design, invariant under translation, rotation and parameterization. Moreover, it additionally offers the option for uniform-scale-invariance. The optional scale-invariance is achieved by scaling features to z-scores, while invariance under parameterization shifts is achieved by using elliptic Fourier analysis (EFA) on the resulting curvature vectors. These invariant shape descriptors provide an embedding into a fixed-dimensional feature space that can be utilized for various applications: (i) as input features for deep and shallow learning techniques; (ii) as input for dimension reduction schemes for providing a visual reference for clustering collection of shapes. The capabilities of the proposed framework are demonstrated in the context of visual analysis and unsupervised classification of histology images. CCS Concepts • Applied computing → Imaging; • Computing methodologies → Shape representations; Cluster analysis;","PeriodicalId":88872,"journal":{"name":"Eurographics Workshop on Visual Computing for Biomedicine","volume":"21 1 1","pages":"61-70"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"InShaDe: Invariant Shape Descriptors for Visual Analysis of Histology 2D Cellular and Nuclear Shapes\",\"authors\":\"Marco Agus, Khaled A. Althelaya, C. Calì, M. Boido, Yin Yang, G. Pintore, E. Gobbetti, J. Schneider\",\"doi\":\"10.2312/vcbm.20201173\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a shape processing framework for visual exploration of cellular nuclear envelopes extracted from histology images. The framework is based on a novel shape descriptor of closed contours relying on a geodesically uniform resampling of discrete curves to allow for discrete differential-geometry-based computation of unsigned curvature at vertices and edges. Our descriptor is, by design, invariant under translation, rotation and parameterization. Moreover, it additionally offers the option for uniform-scale-invariance. The optional scale-invariance is achieved by scaling features to z-scores, while invariance under parameterization shifts is achieved by using elliptic Fourier analysis (EFA) on the resulting curvature vectors. These invariant shape descriptors provide an embedding into a fixed-dimensional feature space that can be utilized for various applications: (i) as input features for deep and shallow learning techniques; (ii) as input for dimension reduction schemes for providing a visual reference for clustering collection of shapes. The capabilities of the proposed framework are demonstrated in the context of visual analysis and unsupervised classification of histology images. CCS Concepts • Applied computing → Imaging; • Computing methodologies → Shape representations; Cluster analysis;\",\"PeriodicalId\":88872,\"journal\":{\"name\":\"Eurographics Workshop on Visual Computing for Biomedicine\",\"volume\":\"21 1 1\",\"pages\":\"61-70\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Eurographics Workshop on Visual Computing for Biomedicine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2312/vcbm.20201173\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Eurographics Workshop on Visual Computing for Biomedicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2312/vcbm.20201173","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

我们提出了一个形状处理框架,用于从组织学图像中提取细胞核包膜的视觉探索。该框架基于一种新颖的封闭轮廓形状描述符,该描述符依赖于离散曲线的测地线均匀重采样,从而允许基于离散微分几何的计算顶点和边缘的无符号曲率。根据设计,我们的描述符在平移、旋转和参数化下是不变的。此外,它还提供了一致尺度不变性的选项。可选的尺度不变性是通过将特征缩放到z分数来实现的,而参数化偏移下的不变性是通过对结果曲率向量使用椭圆傅里叶分析(EFA)来实现的。这些不变形状描述符提供了嵌入到固定维特征空间的功能,可用于各种应用:(i)作为深度和浅学习技术的输入特征;(ii)作为降维方案的输入,为形状的聚类集合提供视觉参考。所提出的框架的能力在组织学图像的视觉分析和无监督分类的背景下得到了证明。CCS概念•应用计算→成像;•计算方法→形状表示;聚类分析;
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
InShaDe: Invariant Shape Descriptors for Visual Analysis of Histology 2D Cellular and Nuclear Shapes
We present a shape processing framework for visual exploration of cellular nuclear envelopes extracted from histology images. The framework is based on a novel shape descriptor of closed contours relying on a geodesically uniform resampling of discrete curves to allow for discrete differential-geometry-based computation of unsigned curvature at vertices and edges. Our descriptor is, by design, invariant under translation, rotation and parameterization. Moreover, it additionally offers the option for uniform-scale-invariance. The optional scale-invariance is achieved by scaling features to z-scores, while invariance under parameterization shifts is achieved by using elliptic Fourier analysis (EFA) on the resulting curvature vectors. These invariant shape descriptors provide an embedding into a fixed-dimensional feature space that can be utilized for various applications: (i) as input features for deep and shallow learning techniques; (ii) as input for dimension reduction schemes for providing a visual reference for clustering collection of shapes. The capabilities of the proposed framework are demonstrated in the context of visual analysis and unsupervised classification of histology images. CCS Concepts • Applied computing → Imaging; • Computing methodologies → Shape representations; Cluster analysis;
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Visual Analytics to Assess Deep Learning Models for Cross-Modal Brain Tumor Segmentation Distance Visualizations for Vascular Structures in Desktop and VR: Overview and Implementation Is there a Tornado in Alex's Blood Flow? A Case Study for Narrative Medical Visualization HistoContours: a Framework for Visual Annotation of Histopathology Whole Slide Images Predicting, Analyzing and Communicating Outcomes of COVID-19 Hospitalizations with Medical Images and Clinical Data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1