基于arima情景生成与约简的随机单元承诺

Guangyuan Zhang, Wanning Li
{"title":"基于arima情景生成与约简的随机单元承诺","authors":"Guangyuan Zhang, Wanning Li","doi":"10.1109/TDC.2016.7519936","DOIUrl":null,"url":null,"abstract":"Under high penetration of wind energy, the power system is facing the challenge to maintain the balance between generation and load due to the uncertainty and variability of wind. The traditional unit commitment only consider the deterministic load and wind output in next day and use the operating reserve to handle the net load uncertainty. In this paper, the stochastic unit commitment is developed to address the uncertainty of load and wind output. The time series model Autoregressive Integrated Moving Average (ARIMA) is applied to provide the point estimation and prediction interval for next 24 hours based on the historical load and wind data. The Monte-Carlo simulation and scenario reduction is applied to generate the scenarios and reduce the scenario number. The Benders Decomposition is used to solve the large scale stochastic programming problem in a more efficient manner. A 6 bus system is simulated and studied for the proposed model and algorithm.","PeriodicalId":6497,"journal":{"name":"2016 IEEE/PES Transmission and Distribution Conference and Exposition (T&D)","volume":"24 1","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2016-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Stochastic unit commitment basec on arima scenario generation and reduction\",\"authors\":\"Guangyuan Zhang, Wanning Li\",\"doi\":\"10.1109/TDC.2016.7519936\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Under high penetration of wind energy, the power system is facing the challenge to maintain the balance between generation and load due to the uncertainty and variability of wind. The traditional unit commitment only consider the deterministic load and wind output in next day and use the operating reserve to handle the net load uncertainty. In this paper, the stochastic unit commitment is developed to address the uncertainty of load and wind output. The time series model Autoregressive Integrated Moving Average (ARIMA) is applied to provide the point estimation and prediction interval for next 24 hours based on the historical load and wind data. The Monte-Carlo simulation and scenario reduction is applied to generate the scenarios and reduce the scenario number. The Benders Decomposition is used to solve the large scale stochastic programming problem in a more efficient manner. A 6 bus system is simulated and studied for the proposed model and algorithm.\",\"PeriodicalId\":6497,\"journal\":{\"name\":\"2016 IEEE/PES Transmission and Distribution Conference and Exposition (T&D)\",\"volume\":\"24 1\",\"pages\":\"1-5\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-05-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE/PES Transmission and Distribution Conference and Exposition (T&D)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TDC.2016.7519936\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE/PES Transmission and Distribution Conference and Exposition (T&D)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TDC.2016.7519936","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

在风能高度渗透的情况下,由于风的不确定性和可变性,电力系统面临着保持发电与负荷平衡的挑战。传统的机组承诺只考虑确定性负荷和次日的风电输出,利用运行储备来处理净负荷的不确定性。本文提出了随机机组承诺来解决负荷和风力输出的不确定性问题。采用时间序列自回归综合移动平均(ARIMA)模型,根据历史负荷和风力数据,给出未来24小时的点估计和预测区间。采用蒙特卡罗模拟和场景约简的方法生成场景,减少场景数量。Benders分解是求解大规模随机规划问题的一种更有效的方法。针对所提出的模型和算法,对某6总线系统进行了仿真研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Stochastic unit commitment basec on arima scenario generation and reduction
Under high penetration of wind energy, the power system is facing the challenge to maintain the balance between generation and load due to the uncertainty and variability of wind. The traditional unit commitment only consider the deterministic load and wind output in next day and use the operating reserve to handle the net load uncertainty. In this paper, the stochastic unit commitment is developed to address the uncertainty of load and wind output. The time series model Autoregressive Integrated Moving Average (ARIMA) is applied to provide the point estimation and prediction interval for next 24 hours based on the historical load and wind data. The Monte-Carlo simulation and scenario reduction is applied to generate the scenarios and reduce the scenario number. The Benders Decomposition is used to solve the large scale stochastic programming problem in a more efficient manner. A 6 bus system is simulated and studied for the proposed model and algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Fast evaluation of probabilistic total transfer capability considering multiple wind farms An automated model based fault locating method for distribution systems Fault location identification of a hybrid HVDC-VSC system containing cable and overhead line segments using transient data Conductor corrosion inspection of aluminum conductor steel reinforced transmission lines Microgrid load management and control strategies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1